Antihyperglycemic and Antioxidative Effects of Hydroxyethyl Methylcellulose (HEMC) and Hydroxypropyl Methylcellulose (HPMC) in Mice Fed with a High Fat Diet
The effect of dietary feeding of hydroxyethyl methylcellulose (HEMC) and hydroxypropyl methylcellulose (HPMC) on the glucose metabolism and antioxidative status in mice under high fat diet conditions was investigated. The mice were randomly divided and given experimental diets for six weeks: normal control (NC group), high fat (HF group), and high fat supplemented with either HEMC (HF+HEMC group) or HPMC (HF+HPMC group). At the end of the experimental period, the HF group exhibited markedly higher blood glucose and insulin levels as well as a higher erythrocyte lipid peroxidation rate relative to the control group. However, diet supplementation of HEMC and HPMC was found to counteract the high fat-induced hyperglycemia and oxidative stress via regulation of antioxidant and hepatic glucose-regulating enzyme activities. These findings illustrate that HEMC and HPMC were similarly effective in improving the glucose metabolism and antioxidant defense system in high fat-fed mice and they may be beneficial as functional biomaterials in the development of therapeutic agents against high fat diet-induced hyperglycemia and oxidative stress.
References
[1]
Burdock, G.A. Safety assessment of hydroxypropyl methylcellulose as a food ingredient. Food Chem. Toxicol 2007, 45, 2341–2351.
[2]
Maki, K.C.; Carson, M.L.; Anderson, W.H.K.; Geohas, J.; Reeves, M.S.; Farmer, M.V.; Turowski, M.; Miller, M.; Kaden, V.N.; Dicklin, M.R.; et al. Lipid-altering effects of different formulations of hydroxymethylcellulose. J. Clin. Lipidol 2009, 3, 159–166.
Reppas, C.; Swidan, S.Z.; Tobey, S.W.; Turowski, M.; Dressman, J.B. Hydroxypropylmethylcellulose significantly lowers blood cholesterol in mildly hypercholesterolemic human subjects. Eur. J. Clin. Nutr 2009, 63, 71–77.
[5]
Swidan, S.Z.; Reppas, C.; Barnett, J.L.; Grenwood, D.E.; Tallman, A.M.; Tobey, S.W.; Dressman, J.B. Ability of two comestible formulations of hydroxypropylmethylcellulose to lower serum cholesterol concentrations. Eur. J. Pharm. Sci 1996, 4, 239–245.
[6]
Hung, S.C.; Anderson, W.H.K.; Albers, D.R.; Langhorst, M.L.; Young, S.A. Effect of hydroxypropyl methylcellulose on obesity and glucose metabolism in a diet-induced obesity mouse model. J. Diabetes 2011, 3, 158–167.
[7]
Maki, K.C.; Carson, M.L.; Miller, M.P.; Turowski, M.; Bell, M.; Wilder, D.M.; Rains, T.M.; Reeves, M.S. Hydroxypropylmethylcellulose and methylcellulose consumption reduce postprandial insulinemia in overweight and obese men and women. J. Nutr 2008, 138, 292–296.
[8]
Bray, G.A.; Paeratakul, S.; Popkin, B.M. Dietary fat and obesity: A review of animal, clinical and epidemiological studies. Physiol. Behav 2004, 83, 549–555.
[9]
Park, J.; Rho, H.K.; Kim, K.H.; Choi, S.S.; Lee, Y.S.; Kim, J.B. Overexpression of glucose-6-phosphate dehydrogenase is associated with lipid dysregulation and insulin resistance in obesity. Mol. Cell. Biol 2005, 25, 5146–5157.
[10]
Lichtenstein, A.H.; Schwab, U.S. Relationship of dietary fat to glucose metabolism. Atherosclerosis 2000, 150, 227–243.
[11]
Sharma, N.; Garg, V.; Paul, A. Antihyperglycemic, antihyperlipidemic and antioxidative potential of Prosopis cineraria bark. Indian J. Clin. Biochem 2010, 25, 193–200.
[12]
Ban, S.J.; Rico, C.W.; Um, I.C.; Kang, M.Y. Comparative evaluation of the hypolipidemic effects of hydroxyethyl methylcellulose (HEMC) and hydroxypropyl methylcellulose (HPMC) in high fat-fed mice. Food Chem. Toxicol 2012, 50, 130–134.
[13]
Amrani, A.; Durant, S.; Throsby, M.; Coulaud, J.; Dardenne, M.; Homo-Delarche, F. Glucose homeostasis in the nonobese diabetic mouse at the prediabetic stage. Endoctrinology 1998, 139, 1115–1124.
[14]
Hung, S.C.; Bartley, G.; Young, S.A.; Albers, D.R.; Dielman, D.R.; Anderson, W.H.K.; Yokohama, W. Dietary fiber improves lipid homeostasis and modulates adipocytokines in hamsters. J. Diabetes 2009, 1, 194–206.
Reppas, C.; Greenwood, D.E.; Dressman, J.B. Longitudinal versus radial effects of hydroxypropyl methylcellulose on gastrointestinal glucose absorption in dogs. Eur. J. Pharmacol. Sci 1999, 8, 211–219.
[17]
Topping, D.L.; Oakenfull, D.; Trimble, R.P.; Illman, R.J. A viscous fibre (methylcellulose) lowers blood glucose and plasma triacylglycerols and increases liver glycogen independently of volatile fatty acid production in the rat. Br. J. Nutr 1988, 59, 21–30.
[18]
Maki, K.C.; Carson, M.L.; Miller, M.P.; Turowski, M.; Bell, M.; Wilder, D.M.; Reeves, M.S. High-viscosity hydroxypropylmethylcellulose blunts postprandial glucose and insulin responses. Diabetes Care 2007, 30, 1039–1043.
[19]
Ibrahim, W.; Lee, U.S.; Yeh, C.C.; Szabo, J.; Bruckner, G.; Chow, C.K. Oxidative stress and antioxidant status in mouse liver: Effects of dietary lipid, vitamin E and iron. J. Nutr 1997, 127, 1401–1406.
[20]
Sanchez, D.; Qui?ones, M.; Moulay, L.; Muguerza, B.; Miguel, M.; Aleixandre, A. Soluble fiber-enriched diets improve inflammation and oxidative stress biomarkers in Zucker fatty rats. Pharmacol. Res 2011, 64, 31–35.
[21]
Thampi, B.S.; Manoj, G.; Leelamma, S.; Menon, V.P. Dietary fiber and lipid peroxidation: Effect of dietary fiber on levels of lipids and lipid peroxides in high fat diet. Indian J. Exp. Biol 1991, 29, 563–567.
[22]
Coope, G.J.; Atkinson, A.M.; Allott, C.; McKerrecher, D.; Johnstone, C.; Pike, K.G.; Holme, P.C.; Vertigan, H.; Gill, D.; Coghlan, M.P.; et al. Predictive blood glucose lowering efficacy by glucokinase activators in high fat fed female zucker rats. Br. J. Pharmacol 2006, 149, 328–335.
[23]
Friedman, J.E.; Sun, Y.; Ishizuka, T.; Farrell, C.J.; McCormack, S.E.; Herron, L.M.; Hakimi, P.; Lechner, P.; Yun, J.S. Phosphoenolpyruvate carboxykinase (GTP) gene transcription and hyperglycemia are regulated by glucocorticoids in genetically obese db/db transgenic mice. J. Biol. Chem 1997, 272, 31475–31481.
[24]
Devi, G.S.; Prasad, M.H.; Saraswathi, I.; Raghu, D.; Rao, D.N.; Reddy, P.P. Free radicals antioxidant enzymes and lipid peroxidation in different types of leukemia. Clin. Chim. Acta 2000, 293, 53–62.
[25]
Reiter, R.J.; Tan, D.; Burkhardt, S. Reactive oxygen and nitrogen species and cellular and organismal decline:amelioration with melatonin. Mech. Aging Dev 2002, 123, 1007–1019.
[26]
Ng, C.J.; Shih, D.M.; Hama, S.Y.; Villa, N.; Navab, M.; Reddy, S.T. The paraoxonase gene family and atherosclerosis. Free Radic. Biol. Med 2005, 38, 153–163.
[27]
Mullineaux, P.M.; Creissen, G.P. Glutathione Reductase: Regulation and Role in Oxidative Stress. In Oxidative Stress and the Molecular Biology of Antioxidant Defenses; Scandalios, J.G., Ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1997; pp. 667–713.
[28]
May, S.; de Haen, C. The insulin-like effect of hydrogen peroxide on pathways of lipid synthesis in rat adipocytes. J. Biol. Chem 1979, 254, 9017–9021.
[29]
American Institute of Nutrition. Report of ad hoc committee on standards for nutritional studies. J. Nutr. 1980, 110, 1717–1726.
[30]
Seifter, S.; Dayton, S.; Navic, B.; Muntwyler, E. The estimation of glycogen with the anthrone reagent. Arch. Biochem 1950, 25, 191–200.
[31]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem 1979, 95, 351–358.
[32]
Hulcher, F.H.; Oleson, W.H. Simplified spectrophotometric assay for microsomal 3-hydroxy-3-methylglutaryl CoA reductase by measurement of coenzyme A. J. Lipid Res 1973, 14, 625–631.
[33]
Davidson, A.L.; Arion, W.J. Factors underlying significant underestimations of glucokinase activity in crude liver extracts: Physiological implications of higher cellular activity. Arch. Biochem. Biophys 1987, 253, 156–167.
[34]
Alegre, M.; Ciudad, C.J.; Fillat, C.; Guinovart, J.J. Determination of glucose-6-phosphatase activity using the glucose dehydrogenase-coupled reaction. Anal. Biochem 1988, 173, 185–189.
[35]
Bentle, L.A.; Lardy, H.A. Interaction of anions and divalent metal ions with phosphoenolpyruvate carboxykinase. J. Biol. Chem 1976, 251, 2916–2921.
[36]
Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and convenient assay for superoxide dismutase. Eur. J. Biochem 1974, 47, 469–474.
[37]
Bradford, M.M. A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem 1976, 72, 248–254.
[38]
Aebi, H. Catalase. In Method of Enzymatic Analysis; Bergmeyer, H.U., Ed.; Academic Press: New York NY, USA, 1974; Volume 2, pp. 673–684.
[39]
Paglia, E.D.; Valentine, W.N. Studies on quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med 1967, 70, 158–169.
[40]
Mize, C.E.; Langdon, R.G. Hepatic glutathione reductase, purification and general kinetic properties. J. Biol. Chem 1952, 237, 1589–1595.
[41]
Mackness, M.I.; Arrol, S.; Durrington, P.N. Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Lett 1991, 286, 152–154.