全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Electrochemical Method to Detect Gamma Glutamyl Transpeptidase

DOI: 10.3390/ijms13032801

Keywords: gamma glutamyl transpeptidase, glutathione, copper ions, electrochemical

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gamma glutamyl transpeptidase (GGT) is a transferase, which is of great importance in sustaining intracellular cysteine and glutathione levels. The abnormal expression of GGT is significantly associated with features of many metabolic syndromes (e.g., hepatocellular carcinoma). Therefore, it is essential to develop methods to detect GGT so as to monitor the physiological or pathological phenomena related to this species. In this work, by making use of a complex formed by Cu 2+ and glutathione, which may exhibit excellent voltammetric response, we have proposed a novel potential electrochemical method for the detection of the enzyme. Results show that in the presence of GGT, the formation of Cu 2+-glutathione complex on a working electrode will be disrupted, resulting in greatly depressed electrochemical signals. The primary method exhibits some advantages, such as it being fast, cost-efficient, and conveniently operated. It also has the potential to be further developed as an effective method in the quantitative detection of GGT in real samples.

References

[1]  Griffith, O.W.; Bridges, R.J.; Meister, A. Transport of gamma-glutamyl amino acids: Role of glutathione and gamma-glutamyl transpeptidase. Proc. Natl. Acad. Sci. USA 1979, 76, 6319–6322.
[2]  Meister, A.; Anderson, M.E. Glutathione. Annu. Rev. Biochem 1983, 52, 711–760.
[3]  Pero, M.E.; Pelagalli, A.; Lombardi, P.; Avallone, L. Glutathione concentration and gamma-glutamyltransferase activity in water buffalo colostrums. J. Anim. Physiol. Anim. Nutr 2010, 94, 549–551.
[4]  Jenderny, S.; Lin, H.; Garrett, T.; Tew, K.D.; Townsend, D.M. Protective effects of a glutathione disulfide mimetic (NOV-002) against cisplatin induced kidney toxicity. Biomed. Pharmacother 2010, 64, 73–76.
[5]  Reuter, S.; Schnekenburger, M.; Cristofanon, S.; Buck, I.; Teiten, M.H.; Daubeuf, S.; Eifes, S.; Dicato, M.; Aggarwal, B.B.; Visvikis, A.; et al. Tumor necrosis factor α induces γ-glutamyltransferase expression via nuclear factor-κB in cooperation with Sp1. Biochem. Pharmacol 2009, 77, 397–411.
[6]  Pompella, A.; de Tata, V.; Paolicchi, A.; Zunino, F. Expression of γ-glutamyltransferase in cancer cells and its significance in drug resistance. Biochem. Pharmacol 2006, 71, 231–238.
[7]  Giommarelli, C.; Corti, A.; Supino, R.; Favini, E.; Paolicchi, A.; Pompella, A.; Zunino, F. Cellular response to oxidative stress and ascorbic acid in melanoma cells overexpressing γ-glutamyltransferase. Eur. J. Cancer 2008, 44, 750–759.
[8]  Pompella, A.; Corti, A.; Paolicchi, A.; Giommarelli, C.; Zunino, F. γ-Glutamyltransferase, redox regulation and cancer drug resistance. Curr. Opin. Pharmacol 2007, 7, 360–366.
[9]  Whitfield, J.B. Gamma glutamyl transferase. Crit. Rev. Clin. Lab. Sci 2001, 38, 263–355.
[10]  Hann, H.W.L.; Lee, J.; Bussard, A.; Liu, C.; Jin, Y.R.; Guha, K.; Clayton, M.M.; Ardlie, K.; Pellini, M.J.; Feitelson, M.A. Preneoplastic markers of hepatitis B virus-associated hepatocellular carcinoma. Cancer Res 2004, 64, 7329–7335.
[11]  Gao, Q.; Qiu, S.J.; Fan, J.; Zhou, J.; Wang, X.Y.; Xiao, Y.S.; Xu, Y.; Li, Y.W.; Tang, Z.Y. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J. Clin. Oncol 2007, 25, 2586–2593.
[12]  Infante, J.R.; Matsubayashi, H.; Sato, N.; Tonascia, J.; Klein, A.P.; Riall, T.A.; Yeo, C.; Iacobuzio-Donahue, C.; Goggins, M. Peritumoral fibroblast SPARC expression and patient outcome with resectable pancreatic adenocarcinoma. J. Clin. Oncol 2007, 25, 319–325.
[13]  Tarao, K.; Takemiya, S.; Tamai, S.; Sugimasa, Y.; Ohkawa, S.; Akaike, M.; Tanabe, H.; Shimizu, A.; Yoshida, M.; Kakita, A. Relationship between the recurrence of hepatocellular carcinoma (HCC) and serum alanine aminotransferase levels in hepatectomized patients with hepatitis C virus-associated cirrhosis and HCC. Cancer 1997, 79, 688–694.
[14]  Nagasue, N.; Kohno, H.; Tachibana, M.; Yamanoi, A.; Ohmori, H.; El-Assal, O.N. Prognostic factors after hepatic resection for hepatocellular carcinoma associated with child-turcotte class B and C cirrhosis. Ann. Surg 1999, 229, 84–90.
[15]  Zhou, X.D.; Tang, Z.Y.; Yang, B.H.; Lin, Z.Y.; Ma, Z.C.; Ye, S.L.; Wu, Z.Q.; Fan, J.; Qin, L.X.; Zheng, B.H. Experience of 1000 patients who underwent hepatectomy for small hepatocellular carcinoma. Cancer 2001, 91, 1479–1486.
[16]  Silva, I.S.; Ferraz, M.L.; Perez, R.M.; Lanzoni, V.P.; Figueiredo, V.M.; Silva, A.E. Role of γ-glutamyl transferase activity in patients with chronic hepatitis C virus infection. J. Gastroenterol. Hepatol 2004, 19, 314–318.
[17]  Yao, D.F.; Jiang, D.R.; Huang, Z.W.; Lu, J.X.; Tao, Q.Y.; Yu, Z.J.; Meng, X.Y. Abnormal expression of hepatoma specific γ-glutamyl transferase and alteration of γ-glutamyl transferase gene methylation status in patients with hepatocellular carcinoma. Cancer 2000, 88, 761–769.
[18]  Stefaniuk, P.; Cianciara, J.; Wiercinska-Drapalo, A. Present and future possibilities for early diagnosis of hepatocellular carcinoma. World J. Gastroenterol 2010, 16, 418–424.
[19]  Ikeda, Y.; Taniguchi, N. Gene expression of γ-glutamyltranspeptidase. Methods Enzymol 2005, 401, 408–425.
[20]  Pettersen, I.; Andersen, J.H.; Bjornland, K.; Mathisen, O.; Bremnes, R.; Wellman, M.; Visvikis, A.; Huseby, N.E. Heterogeneity in γ-glutamyltransferase mRNA expression and glycan structures. Search for tumor-specific variants in human liver metastases and colon carcinoma cells. Biochim. Biophys. Acta 2003, 1648, 210–218.
[21]  Huseby, N.E.; Stromme, J.H. Practical points regarding routine determination of γ-glutamyl transferase (γ-GT) in serum with a kinetic method at 37 °C. Scand. J. Clin. Lab. Invest 1974, 34, 357–361.
[22]  Masia, A.; Destroa, T.; Turettaa, L.; Varottob, S.; Caporalec, G.; Ferrettia, M. Localization of γ-glutamyl transferase activity and protein in Zea mays organs and tissues. J. Plant Physiol 2007, 164, 1527–1535.
[23]  Urano, Y.; Sakabe, M.; Kosaka, N.; Ogawa, M.; Mitsunaga, M.; Asanuma, D.; Kamiya, M.; Young, M.R.; Nagano, T.; Choyke, P.L.; et al. Rapid cancer detection by topically spraying a γ-glutamyltranspeptidase-activated fluorescent probe. Sci. Transl. Med 2011, 3, doi:10.1126/scitranslmed.3002823.
[24]  Kiuchi, K.; Kiuchi, K.; Nagatsu, T.; Togari, A.; Kumagai, H. Highly sensitive assay for γ-glutamyltranspeptidase activity by high-performance liquid chromatography with electrochemical detection. J. Chromatogr 1986, 357, 191–198.
[25]  Yao, D.F.; Huang, Z.W.; Chen, S.Z.; Huang, J.F.; Lu, J.X.; Xiao, M.B.; Meng, X.Y. Diagnosis of hepatocellular carcinoma by quantitative detection of hepatoma-specific bands of serum γ-glutamyltransferase. Am. J. Clin. Pathol 1998, 110, 743–749.
[26]  Fang, C.; Zhou, X.Y. Voltammetry and EQCM investigation of glutathione monolayer and its complexation with Cu2+. Electroanalysis 2003, 15, 20–26.
[27]  Yang, W.R.; Gooding, J.J.; Hibbert, D.B. Redox voltammetry of sub-parts per billion levels of Cu2+ at polyaspartate-modified gold electrodes. Analyst 2001, 126, 1573–1577.
[28]  Liu, A.C.; Chen, D.C.; Lin, C.C.; Chou, H.H.; Chen, C.H. Application of cysteine monolayers for electrochemical determination of sub-ppb copper(II). Anal. Chem 1999, 71, 1549–1552.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133