|
地球物理学报 2009
The damped PSO algorithm and its application for magnetotelluric sounding data inversion
|
Abstract:
粒子群优化算法(PSO)是模仿鸟群寻找食物的社会行为的一种全局最优化算法,在多维空间函数寻优、动态目标寻优等方面有着收敛速度快、解质量高且需要设置的参数较少等优点.本文在研究常规粒子群优化算法的基础上,对常规的粒子群算法进行了改进,提出了一种新的惯性权重ω参数振荡递减策略,加快了PSO算法的收敛速度,构造的新算法称为阻尼粒子群优化算法.在MATLAB 6.5编程环境中对阻尼PSO算法进行了数值实验,并对大地电磁测深的理论模型和实测数据进行了反演试算,结果表明,阻尼PSO算法不依赖于初始模型、能够搜索到全局极值,不易陷入局部极值,是一种快速有效的地球物理反演方法.