全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Human Gene Control by Vital Oncogenes: Revisiting a Theoretical Model and Its Implications for Targeted Cancer Therapy

DOI: 10.3390/ijms13010316

Keywords: oncogenes, gene regulation, gene transcription, transcription activator, targeted cancer therapy, signal transduction, carcinogenesis, protein kinase, cell cycle control, steroid hormone action

Full-Text   Cite this paper   Add to My Lib

Abstract:

An important assumption of our current understanding of the mechanisms of carcinogenesis has been the belief that clarification of the cancer process would inevitably reveal some of the crucial mechanisms of normal human gene regulation. Since the momentous work of Bishop and Varmus, both the molecular and the biochemical processes underlying the events in the development of cancer have become increasingly clear. The identification of cellular signaling pathways and the role of protein kinases in the events leading to gene activation have been critical to our understanding not only of normal cellular gene control mechanisms, but also have clarified some of the important molecular and biochemical events occurring within a cancer cell. We now know that oncogenes are dysfunctional proto-oncogenes and that dysfunctional tumor suppressor genes contribute to the cancer process. Furthermore, Weinstein and others have hypothesized the phenomenon of oncogene addiction as a distinct characteristic of the malignant cell. It can be assumed that cancer cells, indeed, become dependent on such vital oncogenes. The products of these vital oncogenes, such as c-myc, may well be the Achilles heel by which targeted molecular therapy may lead to truly personalized cancer therapy. The remaining problem is the need to introduce relevant molecular diagnostic tests such as genome microarray analysis and proteomic methods, especially protein kinase identification arrays, for each individual patient. Genome wide association studies on cancers with gene analysis of single nucleotide and other mutations in functional proto-oncogenes will, hopefully, identify dysfunctional proto-oncogenes and allow the development of more specific targeted drugs directed against the protein products of these vital oncogenes. In 1984 Willis proposed a molecular and biochemical model for eukaryotic gene regulation suggesting how proto-oncogenes might function within the normal cell. That model predicted the existence of vital oncogenes and can now be used to hypothesize the biochemical and molecular mechanisms that drive the processes leading to disruption of the gene regulatory machinery, resulting in the transformation of normal cells into cancer.

References

[1]  Britten, R.J.; Davidson, E.H. Gene regulation for higher cells: A theory. Science 1969, 165, 349–357.
[2]  Venters, B.J.; Pugh, B.F. How eukaryotic genes are transcribed. Crit. Rev. Biochem. Mol. Biol 2009, 44, 117–141.
[3]  Rous, P. Transmission of a malignant new growth by means of a cell-free filtrate. J. Am. Med. Assoc 1983, 250, 1445–1449.
[4]  Bishop, J.M. Cellular oncogenes and retroviruses. Annu. Rev. Biochem 1983, 52, 301–354.
[5]  Panganiban, A.T. Retroviral DNA integration. Cell 1985, 42, 5–6.
[6]  Bishop, J.M. Viral oncogenes. Cell 1985, 42, 23–38.
[7]  Marx, J.L. Tumor viruses and the kinase connection. Science 1981, 211, 1336–1338.
[8]  Erikson, R.I.; Collett, M.S.; Erikson, E.; Purchio, A.F.; Brugge, J.S. Protein phosphorylation mediated by partially purified avian sarcoma virus transforming-gene product. Cold Spring Harbor Symp. Quant. Biol 1980, 44, 907–917.
[9]  Rubin, C.S.; Rosen, O.M. Protein phosphorylation. Annu. Rev. Biochem 1975, 44, 831–887.
[10]  Krebs, E.G.; Beavo, J.A. Phosphorylation-dephosphorylation of enzymes. Annu. Rev. Biochem 1979, 48, 923–959.
[11]  Barford, D.; Das, A.K.; Egloff, M.P. The structure and mechanism of protein phosphatases: Insights into catalysis and regulation. Annu. Rev. Biophys. Biomol. Struct 1998, 27, 133–164.
[12]  Willis, R.E. Gene control by phosphoproteins: A theoretical model for eukaryotic DNA regulation. Med. Hypotheses 1984, 13, 407–437.
[13]  Hunter, T.; Karin, M. The regulation of transcription by phosphorylation. Cell 1992, 70, 375–387.
[14]  Sahyoun, N.; LeVine, H.; McConnell, R.; Bronson, D.; Cuatrecasas, P. A specific phosphoprotein phosphatase acts on histone H1 phosphorylated by protein kinase C. Proc. Natl. Acad. Sci. USA 1983, 80, 6760–6764.
[15]  Cho, H.; Kim, T.K.; Mancebo, H.; Lane, W.S.; Flores, O.; Reinberg, D. A protein phosphatase functions to recycle RNA polymerase II. Genes Dev 1999, 13, 1540–1552.
[16]  Cheng, A.; Ross, K.E.; Kaldis, P.; Solomon, M.J. Dephosphorylation of cyclin-dependent kinases by type 2C protein phosphatases. Genes Dev 1999, 13, 2946–2957.
[17]  Haspel, R.L.; Darnell, J.E. A nuclear protein tyrosine phosphatase is required for the inactivation of Stat1. Proc. Natl. Acad. Sci. USA 1999, 96, 10188–10193.
[18]  Camps, M.; Nichols, A.; Arkinstall, S. Dual specificity phosphatases: A gene family for control of MAP kinase functions. FASEB J 2000, 14, 6–16.
[19]  Janssens, V.; Goris, J. Protein phosphatase 2A: A highly regulated family of serine/threonine phosphatases implicated in cell growth and signaling. Biochem. J 2001, 353, 417–439.
[20]  Ostman, A.; Hellberg, C.; Bohmer, F.D. Protein-tyrosine phosphatases and cancer. Nat. Rev. Cancer 2006, 6, 307–320.
[21]  Owens, D.M.; Keyse, S.M. Differential regulation of MAP kinase signaling by dual-specificity protein phosphatases. Oncogene 2007, 26, 3203–3213.
[22]  Chitale, D.; Gong, Y.; Taylor, B.S.; Broderick, S.; Brennan, C.; Somwar, R.; Golas, B.; Wang, L.; Motoi, N.; Szoke, J. An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors. Oncogene 2009, 28, 2773–2783.
[23]  Novakofski, J. Role of proto-oncogenes in normal growth and development. J. Anim Sci 1991, 69, 56–73.
[24]  Klampfer, L. Signal transducers and activators of transcription (STATs): Novel targets of chemopreventive and chemotherapeutic drugs. Curr. Cancer Drug Targets 2006, 6, 107–121.
[25]  Karin, M.; Hunter, T. Transcriptional control by protein phosphorylation: Signal transmission from the cell surface to the nucleus. Curr. Biol 1995, 5, 747–757.
[26]  Futreal, P.A.; Coin, L.; Marshall, M.; Down, T.; Hubbard, T.; Wooster, R.; Rahman, N.; Stratton, M.R. A census of human cancer genes. Nat. Rev. Cancer 2004, 4, 177–183.
[27]  Collins, K.; Jacks, T.; Pavletich, N.P. The cell cycle and cancer. Proc. Natl. Acad. Sci. USA 1997, 94, 2776–2778.
[28]  Sherr, C.J. Cancer cell cycles. Science 1996, 274, 1672–1677.
[29]  Park, M.T.; Lee, S.J. Cell cycle and cancer. J. Biochem. Mol. Biol 2003, 36, 60–65.
[30]  Weinstein, I.B.; Joe, A.K. Mechanisms of disease: Oncogene addiction—A rationale for molecular targeting in cancer therapy. Nat. Clin. Pract. Oncol 2006, 3, 448–457.
[31]  Weinstein, I.B.; Joe, A. Oncogene addiction. Cancer Res 2008, 68, 3077–3080.
[32]  Sharma, S.V.; Settleman, J. Oncogene addiction: Setting the stage for molecularly targeted cancer therapy. Genes Dev 2007, 21, 3214–3231.
[33]  Guccione, E.; Martinato, F.; Finocchiaro, G.; Luzi, L.; Tizzoni, L.; Dall’ Olio, V.; Zardo, G.; Nervi, C.; Bernard, L.; Amati, B. Myc-binding-site recognition in the human genome is determined by chromatin context. Nat. Cell Biol 2006, 8, 764–770.
[34]  Worcel, A.; Benyajati, C. Higher order coiling of DNA in chromatin. Cell 1977, 12, 83–100.
[35]  Felsenfeld, G. Chromatin. Nature 1978, 271, 115–122.
[36]  Cartwright, I.L.; Abmayr, S.M.; Fleischmann, G.; Lowenhaupt, K.; Elgin, S.C.; Keene, M.A.; Howard, G.C. Chromatin structure and gene activity: The role of nonhistone chromosomal proteins. CRC Crit. Rev. Biochem 1982, 13, 1–86.
[37]  Thoma, F.; Koller, T. Unravelled nucleosomes, nucleosome beads and higher order structures of chromatin: Influence of non-histone components and histone H1. J. Mol. Biol 1981, 149, 709–373.
[38]  Thoma, F.; Koller, T. Influence of histone H1 on chromatin structure. Cell 1977, 12, 101–107.
[39]  Berger, S.L. Histone modifications in transcriptional regulation. Curr. Opin. Genet. Dev 2002, 12, 142–148.
[40]  Berger, S.L. The complex language of chromatin regulation during transcription. Nature 2007, 447, 407–412.
[41]  Dou, Y.; Mizzen, C.A.; Abrams, M.; Allis, C.D.; Gorovsky, M.A. Phosphorylation of linker histone H1 regulates gene expression in vivo by mimicking H1 removal. Mol. Cell 1999, 4, 641–347.
[42]  Roque, A.; Ponte, I.; Arrondo, J.L.; Suau, P. Phosphorylation of the carboxy-terminal domain of histone H1: Effects on secondary structure and DNA condensation. Nucleic Acids Res 2008, 36, 4719–4726.
[43]  Baak, J.P.; Janssen, E.A.; Soreide, K.; Heikkilae, R. Genomics and proteomics—The way forward. Ann. Oncol 2005, 16, ii30–ii44.
[44]  Duggan, D.J.; Bittner, M.; Chen, Y.; Meltzer, P.; Trent, J.M. Expression profiling using cDNA microarrays. Nat. Genet 1999, 21, 10–14.
[45]  Trevino, V.; Falciani, F.; Barrera-Saldana, H.A. DNA microarrays: A powerful genomic tool for biomedical and clinical research. Mol. Med 2007, 13, 527–541.
[46]  Schuldiner, O.; Benvenisty, N. A DNA microarray screen for genes involved in c-MYC and N-MYC oncogenesis in human tumors. Oncogene 2001, 20, 4984–4994.
[47]  Tao, S.C.; Chen, C.S.; Zhu, H. Applications of protein microarray technology. Comb. Chem. High Througput Screen 2007, 10, 706–718.
[48]  Amit, I.; Citri, A.; Shay, T.; Lu, Y.; Katz, M.; Zhang, F.; Tarcic, G.; Siwak, D.; Lahad, J.; Jacob-Hirsch, J. A module of negative feedback regulators defines growth factor signaling. Nat. Genet 2007, 39, 503–512.
[49]  Afjehi-Sadat, L.; Engidawork, E.; Felizardo-Cabatic, M.; Slavc, I.; Lubec, G. Proteomic profiling of signaling proteins in ten different tumor cell lines. Cancer Genomics 2004, 1, 427–454.
[50]  Manning, G.; Plowman, G.D.; Hunter, T.; Sudarsanam, S. Evolution of protein kinase signaling from yeast to man. Trends Biochem. Sci 2002, 27, 514–520.
[51]  Hubbard, M.J.; Cohen, P. On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem. Sci 1993, 18, 172–177.
[52]  Mann, M.; Ong, S.; Gronborg, M.; Steen, H.; Jensen, O.; Pandey, A. Analysis of protein phosphorylation using mass spectrometry: Deciphering the phosphoproteome. Trends Biotechnol 2002, 20, 261–268.
[53]  Yu, L.-R.; Issaq, H.J.; Veenstra, T.D. Phosphoproteomics for the discovery of kinases as cancer biomarkers and drug targets. Proteomics 2007, 1, 1042–1057.
[54]  Brennan, D.J.; O’Connor, D.P.; Rexhepaj, E.; Ponten, F.; Gallagher, W.M. Antibody-based proteomics: Fast-tracking molecular diagnostics in oncology. Nat. Rev. Cancer 2010, 10, 605–617.
[55]  Willis, R.E. Hypothesis: Is viral transformation mediated by alterations in chromosomal proteins? Med. Hypotheses 1982, 9, 517–528.
[56]  Whitmarsh, A.J.; Davis, R.J. Regulation of transcription factor function by phosphorylation. Cell. Mol. Life Sci 2000, 57, 1172–1183.
[57]  Barberis, A.; Petrascheck, M. Transcription Activation in Eukaryotic Cells; John Wiley & Sons, Ltd: Hoboken, NJ, USA, eLS, 2001.
[58]  Jones, P.A.; Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet 2002, 3, 415–428.
[59]  Choi, J.K.; Howe, L.J. Histone acetylation: Truth of consequences? Biochem. Cell Biol 2009, 87, 139–150.
[60]  Chadee, D.N.; Taylor, W.R.; Hurta, R.A.; Allis, C.D.; Wright, J.A.; Davie, J.R. Increased phosphorylation of histone H1 in mouse fibroblasts transformed with oncogenes or constitutively active mitogen-activated protein kinase kinase. J. Biol. Chem 1995, 270, 20098–20105.
[61]  Taylor, W.R.; Chadee, D.N.; Allis, C.D.; Wright, J.A.; Davie, J.R. Fibroblasts transformed by combinations of ras, myc and mutant p53 exhibit increased phosphorylation of histone H1 that is independent of metastatic potential. FEBS Lett 1995, 377, 51–53.
[62]  Chadee, D.N.; Allis, C.D.; Wright, J.A.; Davie, J.R. Histone H1b phosphorylation is dependent upon ongoing transcription and replication in normal and ras-transformed mouse fibroblasts. J.Biol. Chem 1997, 272, 8113–8116.
[63]  Dahia, P.L. PTEN, a unique tumor suppressor gene. Endocr. Related Cancer 2000, 7, 115–129.
[64]  Ahuja, D.; Saenz-Robles, M.T.; Pipas, J.M. SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene 2005, 24, 7729–7745.
[65]  Sotillo, E.; Garriga, J.; Kurimchak, A.; Grana, X. Cyclin E and SV40 small T antigen cooperate to bypass quiescence and contribute to transformation by activating CDK2 in human fibroblasts. J. Biol. Chem 2008, 283, 11280–11292.
[66]  Watanabe, G.; Howe, A.; Lee, R.J.; Albanese, C.; Shu, I.W.; Karnezis, A.N.; Zon, L.; Kyriakis, J.; Rundell, K.; Pestell, R.G. Induction of cyclin D1 by simian virus 40 small tumor antigen. Proc. Natl. Acad. Sci. USA 1996, 93, 12861–12866.
[67]  Aranda, A.; Pascual, A. Nuclear hormone receptors and gene expression. Physiol. Rev 2001, 81, 1269–1304.
[68]  Weigel, N.L.; Moore, N.L. Steroid receptor phosphorylation: A key modulator of multiple receptor functions. Mol. Endocrinol 2007, 21, 2311–2319.
[69]  Likhite, V.S.; Stossi, F.; Kim, K.; Katzenellenbogen, B.S.; Katzenellenbogen, J.A. Kinase-specific phosphorylation of the estrogen receptor changes receptor interactions with ligand, deoxyribonucleic acid, coregulators associated with alterations in estrogen and tamoxifen activity. Mol. Endocrinol 2006, 20, 3120–3132.
[70]  Bunone, G.; Briand, P.A.; Miksicek, R.J.; Picard, D. Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J 1996, 15, 2174–2183.
[71]  Ikeda, K.; Ogawa, S.; Tsukui, T.; Horie-Inoue, K.; Ouchi, Y.; Kato, S.; Muramatsu, M.; Inoue, S. Protein phosphatase 5 is a negative regulator of estrogen receptor-mediated transcription. Mol. Endocrinol 2004, 18, 1131–1143.
[72]  Narayanan, R.; Adigun, A.A.; Edwards, D.P.; Weigel, N.L. Cyclin-dependent kinase activity is required for progesterone receptor function: Novel role for cyclin A/Cdk2 as a progesterone receptor coactivator. Mol. Cell. Biol 2005, 25, 264–277.
[73]  Hawking, S.W. A Brief History of Time: From the Big Bang to Black Holes; Bantam Dell Publishing Group: New York, NY, USA, 1988; Volume 10.
[74]  Garrett, D. Cell cycle control and cancer. Curr. Sci 2001, 81, 515–521.
[75]  Nurse, P. A long twentieth century of the cell cycle and beyond. Cell 2000, 100, 71–78.
[76]  Johnson, D.G.; Walker, C.L. Cyclins and cell cycle checkpoints. Annu. Rev. Pharmacol. Toxicol 1999, 39, 295–312.
[77]  Malumbres, M.; Barbacid, M. Mammalian cyclin-dependent kinases. Trends Biochem. Sci 2005, 30, 630–641.
[78]  Morgan, D.O. Cyclin-dependent kinases: Engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol 1997, 13, 261–291.
[79]  Morgan, D.O. Principles of CDK regulation. Nature 1995, 374, 131–134.
[80]  Kaldis, P. The cdk-activating kinase (CAK): From yeast to mammals. Cell. Mol. Life Sci 1999, 55, 284–296.
[81]  Kaldis, P.; Solomon, M.J. Analysis of CAK activities from human cells. Eur. J. Biochem. FEBS 2000, 267, 4213–4221.
[82]  Harbour, J.W.; Luo, R.X.; Dei Santi, A.; Postigo, A.A.; Dean, D.C. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 1999, 98, 859–869.
[83]  Cánepa, E.T.; Scassa, M.E.; Ceruti, J.M.; Marazita, M.C.; Carcagno, A.L.; Sirkin, P.F.; Ogara, M.F. INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life 2007, 59, 419–426.
[84]  Massague, J. G1 cell-cycle control and cancer. Nature 2004, 432, 298–306.
[85]  Stamatakos, M.; Palla, V.; Karaiskos, I.; Xiromeritis, K.; Alexiou, I.; Pateras, I.; Kontzoglou, K. Cell cyclins: Triggering elements of cancer or not. World J. surg. Oncol 2010, 8, 111:1–111:8.
[86]  Santamaria, D.; Ortega, S. Cyclins and CDKS in development and cancer: Lessons from genetically modified mice. Front. Biosci 2006, 11, 1164–1188.
[87]  Mermelshtein, A.; Gerson, A.; Walfisch, S.; Delgado, B.; Shechter-Maor, G.; Delgado, J.; Fich, A.; Gheber, L. Expression of D-type cyclins in colon cancer and in cell lines from colon carcinomas. Br. J. Cancer 2005, 93, 338–345.
[88]  Deshpande, A.; Sicinski, P.; Hinds, P.W. Cyclins and cdks in development and cancer: A perspective. Oncogene 2005, 24, 2909–2915.
[89]  Tajara, E.H. Oral cancer and cyclins. Int. J. Oral Maxillofac. Surg 2004, 33, 518. author reply 519.
[90]  Sutherland, R.L.; Musgrove, E.A. Cyclins and breast cancer. J. Mammary Gland Biol. Neoplasia 2004, 9, 95–104.
[91]  Miehlke, S.; Yu, J.; Ebert, M.; Szokodi, D.; Vieth, M.; Kuhlisch, E.; Buchcik, R.; Schimmin, W.; Wehrmann, U.; Malfertheiner, P. Expression of G1 phase cyclins in human gastric cancer and gastric mucosa of first-degree relatives. Dig. Dis. Sci 2002, 47, 1248–1256.
[92]  Bartkova, J.; Rajpert-de Meyts, E.; Skakkebaek, N.E.; Bartek, J. D-type cyclins in adult human testis and testicular cancer: Relation to cell type, proliferation, differentiation, and malignancy. J. Pathol 1999, 187, 573–581.
[93]  Pines, J. Cyclins, CDKs and cancer. Semin. Cancer Biol 1995, 6, 63–72.
[94]  Weinberg, R.A. The retinoblastoma protein and cell cycle control. Cell 1995, 81, 323–330.
[95]  Grana, X.; Garriga, J.; Mayol, X. Role of the retinoblastoma protein family, pRB, p107 and p130 in the negative control of cell growth. Oncogene 1998, 17, 3365–3383.
[96]  Takemura, M.; Yamamoto, T.; Kitagawa, M.; Taya, Y.; Akiyama, T.; Asahara, H.; Linn, S.; Suzuki, S.; Tamai, K.; Yoshida, S. Stimulation of DNA Polymerase [alpha] Activity by Cdk2-Phosphorylated Rb Protein. Biochem. Biophys. Res. Commun 2001, 282, 984–990.
[97]  Akiyama, T.; Ohuchi, T.; Sumida, S.; Matsumoto, K.; Toyoshima, K. Phosphorylation of the retinoblastoma protein by cdk2. Proc. Natl. Acad. Sci. USA 1992, 89, 7900–7904.
[98]  Ewen, M.E.; Sluss, H.K.; Sherr, C.J.; Matsushime, H.; Kato, J.; Livingston, D.M. Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell 1993, 73, 487–497.
[99]  Giacinti, C.; Giordano, A. RB and cell cycle progression. Oncogene 2006, 25, 5220–5227.
[100]  Chambeyron, S.; Bickmore, W.A. Chromatin Decondensation and Nuclear Reorganization of the HoxB Locus upon Induction of Transcription; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2004.
[101]  Gilbert, N.; Thomson, I.; Boyle, S.; Allan, J.; Ramsahoye, B.; Bickmore, W.A. DNA methylation affects nuclear organization, histone modifications, and linker histone binding but not chromatin compaction. J. Cell. Biol 2007, 177, 401–411.
[102]  Zheng, Y.; John, S.; Pesavento, J.J.; Schultz-Norton, J.R.; Schiltz, R.L.; Baek, S.; Nardulli, A.M.; Hager, G.L.; Kelleher, N.L.; Mizzen, C.A. Histone H1 phosphorylation is associated with transcription by RNA polymerases I and II. J. Cell. Biol 2010, 189, 407–415.
[103]  Horn, P.J.; Carruthers, L.M.; Logie, C.; Hill, D.A.; Solomon, M.J.; Wade, P.A.; Imbalzano, A.N.; Hansen, J.C.; Peterson, C.L. Phosphorylation of linker histones regulates ATP-dependent chromatin remodeling enzymes. Nat. Struct. Biol 2002, 9, 263–267.
[104]  Contreras, A.; Hale, T.K.; Stenoien, D.L.; Rosen, J.M.; Mancini, M.A.; Herrera, R.E. The dynamic mobility of histone H1 is regulated by cyclin/CDK phosphorylation. Mol. Cell. Biol 2003, 23, 8626–8636.
[105]  Nesbit, C.; Tersak, J.; Prochownik, V. Myc oncogenes and human neoplastic disease. Oncogene 1999, 18, 3004–3016.
[106]  Adhikary, S.; Eilers, M. Transcriptional regulation and transformation by Myc proteins. Nat. Rev. Mol. Cell Biol 2005, 6, 635–645.
[107]  Meyer, N.; Penn, L.Z. Reflecting on 25 years with MYC. Nat. Rev. Cancer 2008, 8, 976–990.
[108]  Holzel, M.; Kohlhuber, F.; Schlosser, I.; Holzel, D.; Luscher, B.; Eick, D. Myc/max/mad regulate the frequency but not the duration of productive cell cycles. EMBO Rep 2001, 21, 1125–1132.
[109]  Obaya, A.J.; Mateyak, M.; Sedivy, J. Mysterious liaisons: The relationship between c-myc and the cell cycle. Oncogene 1999, 18, 2934–2941.
[110]  Berns, K.; Hijmanns, E.; Bernards, R. Repression of c-Myc responsive genes in cycling cells causes G1 arrest through reduction of cyclin E/CDK2 kinase activity. Oncogene 1997, 15, 1347–56.
[111]  Fernandez, P.C.; Frank, S.R.; Wang, L.; Schroeder, M.; Liu, S.; Greene, J.; Cocito, A.; Amati, B. Genomic targets of the human c-Myc protein. Genes Dev 2003, 17, 1115–1129.
[112]  Perez-Roger, I.; Solomon, D.L.; Sewing, A.; Land, H. Myc activation of cyclin E/Cdk2 kinase involves induction of cyclin E gene transcription and inhibition of p27(Kip1) binding to newly formed complexes. Oncogene 1997, 14, 2373–2381.
[113]  Bouchard, C.; Thieke, K.; Maier, A.; Saffrich, R.; Hanley-Hyde, J.; Ansorge, W.; Reed, S.; Sicinski, P.; Bartek, J.; Eilers, M. Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of p27. EMBO J 1999, 18, 5321–5333.
[114]  Jansen-Durr, P.; Meichle, A.; Steiner, P.; Pagano, M.; Finke, K.; Botz, J.; Wessbecher, J.; Draetta, G.; Eilers, M. Differential modulation of cyclin gene expression by MYC. Proc. Natl. Acad. Sci. USA 1993, 90, 3685–3689.
[115]  Hermeking, H.; Rago, C.; Schuhmacher, M.; Li, Q.; Barrett, J.F.; Obaya, A.J.; O’Connell, B.C.; Mateyak, M.K.; Tam, W.; Kohlhuber, F. Identification of CDK4 as a target of c-MYC. Proc. Natl. Acad. Sci. USA 2000, 97, 2229–2234.
[116]  Rustgi, A.K.; Dyson, N.; Hill, D.; Bernards, R. The c-myc oncoprotein forms a specific complex with the product of the retinoblastoma gene. Cold Spring Harbor Symp. Quant. Biol 1991, 56, 163–167.
[117]  Brown, J.R.; Nigh, E.; Lee, R.J.; Ye, H.; Thompson, M.A.; Saudou, F.; Pestell, R.G.; Greenberg, M.E. Fos family members induce cell cycle entry by activating cyclin D1. Mol. Cell. Biol 1998, 18, 5609–5619.
[118]  Wisdom, R.; Johnson, R.S.; Moore, C. c-Jun regulates cell cycle progression and apoptosis by distinct mechanisms. EMBO J 1999, 18, 188–197.
[119]  Haller, K.; Wu, Y.; Derow, E.; Schmitt, I.; Jeang, K.; Grassman, R. Physical interaction of human T-cell leukemia virus type 1 tax with cyclin-dependent kinase 4 stimulates the phosphorylation of retinoblastoma protein. Mol. Cell. Biol 2002, 22, 3327–3338.
[120]  Martin, N.G.; McAndrew, P.C.; Eve, P.D.; Garrett, M.D. Phosphorylation of cyclin dependent kinase 4 on tyrosine 17 is mediated by Src family kinases. FEBS J 2008, 275, 3099–3109.
[121]  Cohen, S.; Levi-Montalcini, R. Purification and properties of a nerve growth-promoting factor isolated from mouse sarcoma 180. Cancer Res 1957, 17, 15–20.
[122]  Gschwind, A.; Fischer, O.M.; Ullrich, A. The discovery of receptor tyrosine kinases: Targets for cancer therapy. Nat. Rev. Cancer 2004, 4, 361–370.
[123]  Ross, J.S.; Schenkein, D.P.; Pietrusko, R.; Rolfe, M.; Linette, G.P.; Stec, J.; Stagliano, N.E.; Ginsburg, G.S.; Symmans, W.F.; Pusztai, L. Targeted therapies for cancer 2004. Am. J. Clin. Pathol 2004, 122, 598–609.
[124]  Arora, A.; Scholar, E.M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther 2005, 315, 971–979.
[125]  Krause, D.S.; van Etten, R.A. Tyrosine kinases as targets for cancer therapy. N. Eng. J. Med 2005, 353, 172–187.
[126]  Kwak, E.L.; Bang, Y.J.; Camidge, D.R.; Shaw, A.T.; Solomon, B.; Maki, R.G.; Ou, S.H.I.; Dezube, B.J.; J?nne, P.A.; Costa, D.B. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Eng. J. Med 2010, 363, 1693–1703.
[127]  Flaherty, K.T.; Puzanov, I.; Kim, K.B.; Ribas, A.; McArthur, G.A.; Sosman, J.A.; O’Dwyer, P.J.; Lee, R.J.; Grippo, J.F.; Nolop, K. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Eng. J. Med 2010, 363, 809–819.
[128]  Fojo, T.; Parkinson, D.R. Biologically targeted cancer therapy and marginal benefits: Are we making too much of too little or are we achieving too little by giving too much? Clin. Cancer Res 2010, 16, 5972–5980.
[129]  Darnell, J.E. Transcription factors as targets for cancer therapy. Nat. Rev. Cancer 2002, 2, 740–749.
[130]  Stadler, Z.K.; Vijai, J.; Thom, P.; Kirchhoff, T.; Hansen, N.A.; Kauff, N.D.; Robson, M.; Offit, K. Genome-wide association studies of cancer. J. Clin. Oncol 2010, 28, 4255–4267.
[131]  Pusztai, L.; Ayers, M.; Stec, J.; Hortobagyi, G.N. Clinical application of cDNA microarrays in oncology. Oncologist 2003, 8, 252–258.
[132]  LaTulippe, E.; Satagopan, J.; Smith, A.; Scher, H.; Scardino, P.; Reuter, V.; Gerald, W.L. Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res 2002, 62, 4499–4506.
[133]  Harada, T.; Chelala, C.; Crnogorac-Jurcevic, T.; Lemoine, N.R. Genome-wide analysis of pancreatic cancer using microarray-based techniques. Pancreatology 2009, 9, 13–24.
[134]  Welsh, J.B.; Sapinoso, L.M.; Su, A.I.; Kern, S.G.; Wang-Rodriguez, J.; Moskaluk, C.A.; Frierson, H.F.; Hampton, G.M. Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res 2001, 61, 5974–8.
[135]  Chen, X.; Cheung, S.T.; So, S.; Fan, S.T.; Barry, C.; Higgins, J.; Lai, K.M.; Ji, J.; Dudoit, S.; Ng, I.O.L. Gene expression patterns in human liver cancers. Mol. Biol. Cell 2002, 13, 1929–39.
[136]  Fehrmann, R.S.; Li, X.Y.; van der Zee, A.G.; de Jong, S.; Te Meerman, G.J.; de Vries, E.G.; Crijns, A.P. Profiling studies in ovarian cancer: A review. Oncologist 2007, 12, 960–966.
[137]  Sotiriou, C.; Pusztai, L. Gene-expression signatures in breast cancer. N. Eng. J. Med 2009, 360, 790–800.
[138]  Chung, C.H.; Seeley, E.H.; Roder, H.; Grigorieva, J.; Tsypin, M.; Roder, J.; Burtness, B.A.; Argiris, A.; Forastiere, A.A.; Gilbert, J. Detection of tumor epidermal growth factor receptor pathway dependence by serum mass spectrometry in cancer patients. Cancer Epidemiol. Biomark. Prev 2010, 19, 358–365.
[139]  Chen, H.B.; Pan, K.; Tang, M.K.; Chui, Y.L.; Chen, L.; Su, Z.J.; Shen, Z.Y.; Li, E.M.; Xie, W.; Lee, K.K. Comparative proteomic analysis reveals differentially expressed proteins regulated by a potential tumor promoter, BRE, in human esophageal carcinoma cells. Biochem. Cell Biol 2008, 86, 302–311.
[140]  Rush, J.; Moritz, A.; Lee, K.A.; Guo, A.; Goss, V.L.; Spek, E.J.; Zhang, H.; Zha, X.; Polakiewicz, R.D.; Comb, M.J. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotech 2005, 23, 94–101.
[141]  Fan, A.C.; Deb-Basu, D.; Orban, M.W.; Gotlib, J.R.; Natkunam, Y.; O’Neill, R.; Padua, R.A.; Xu, L.; Taketa, D.; Shirer, A.E. Nanofluidic proteomic assay for serial analysis of oncoprotein activation in clinical specimens. Nat. Med 2009, 15, 566–571.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133