Bone tissue engineering strategies are emerging as attractive alternatives to autografts and allografts in bone tissue reconstruction, in particular thanks to their association with nanotechnologies. Nanostructured biomaterials, indeed, mimic the extracellular matrix (ECM) of the natural bone, creating an artificial microenvironment that promotes cell adhesion, proliferation and differentiation. At the same time, the possibility to easily isolate mesenchymal stem cells (MSCs) from different adult tissues together with their multi-lineage differentiation potential makes them an interesting tool in the field of bone tissue engineering. This review gives an overview of the most promising nanostructured biomaterials, used alone or in combination with MSCs, which could in future be employed as bone substitutes. Recent works indicate that composite scaffolds made of ceramics/metals or ceramics/polymers are undoubtedly more effective than the single counterparts in terms of osteoconductivity, osteogenicity and osteoinductivity. A better understanding of the interactions between MSCs and nanostructured biomaterials will surely contribute to the progress of bone tissue engineering.
References
[1]
Swetha, M.; Sahithi, K.; Moorthi, A.; Srinivasan, N.; Ramasamy, K.; Selvamurugan, N. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int. J. Biol. Macromol 2010, 47, 1–4.
[2]
Lee, K.J.; Roper, J.G.; Wang, J.C. Demineralized bone matrix and spinal arthrodesis. Spine J 2005, 5, 217S–223S.
[3]
Giannoudis, P.V.; Dinopoulos, H.; Tsiridis, E. Bone substitutes: An update. Injury 2005, 36, S20–S27.
[4]
Summers, B.N.; Eisenstein, S.M. Donor site pain from the ilium. A complication of lumbar spine fusion. J. Bone Joint Surg. Br 1989, 71, 677–680.
[5]
Arrington, E.D.; Smith, W.J.; Chambers, H.G.; Bucknell, A.L.; Davino, N.A. Complications of iliac crest bone graft harvesting. Clin. Orthop. Relat. Res 1996, 329, 300–309.
[6]
Seiler, J.G., III; Johnson, J. Iliac crest autogenous bone grafting: Donor site complications. J. South. Orthop. Assoc 2000, 9, 91–97.
[7]
Sandhu, H.S.; Grewal, H.S.; Parvataneni, H. Bone grafting for spinal fusion. Orthop. Clin. North Am 1999, 30, 685–698.
[8]
Ehrler, D.M.; Vaccaio, A.R. The use of allograft bone in lumbar spine surgery. Clin. Orthop. Relat. Res 2000, 371, 38–45.
[9]
Finkemeier, C.G. Bone-grafting and bone-graft substitutes. J. Bone Joint Surg. Am 2002, 84, 454–464.
[10]
Duan, B.; Wang, M.; Zhou, W.Y.; Cheung, W.L.; Li, Z.Y.; Lu, W.W. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater 2010, 6, 4495–4505.
[11]
Damien, C.J.; Parsons, J.R. Bone graft and bone graft substitutes: A review of current technology and applications. J. Appl. Biomater 1991, 2, 187–208.
[12]
Parikh, S.N. Bone graft substitutes: Past, present, future. J. Postgrad. Med 2002, 48, 142–148.
[13]
Heise, U.; Osborn, J.F.; Duwe, F. Hydroxyapatite ceramic as a bone substitute. Int. Orthop 1990, 14, 329–338.
[14]
Kinnunen, I.; Aitasalo, K.; P?ll?nen, M.; Varpula, M. Reconstruction of orbital floor fractures using bioactive glass. J. Craniomaxillofac. Surg 2000, 28, 229–334.
[15]
Meyer, U.; Joos, U.; Wiesmann, H.P. Biological and biophysical principles in extracorporal bone tissue engineering. Part III. Int. J. Oral Maxillofac. Surg 2004, 33, 635–641.
[16]
Jones, E.A.; Yang, X.B. Mesenchymal stem cells and their future in bone repair. Int. J. Adv. Rheumatol 2005, 3, 15–21.
[17]
Chen, J.P.; Chang, Y.S. Preparation and characterization of composite nanofibers of polycaprolactone and nanohydroxyapatite for osteogenic differentiation of mesenchymal stem cells. Colloids Surf. B Biointerfaces 2011, 86, 169–175.
[18]
Seyedjafari, E.; Soleimani, M.; Ghaemi, N.; Sarbolouki, M.N. Enhanced osteogenic differentiation of cord blood-derived unrestricted somatic stem cells on electrospun nanofibers. J. Mater. Sci. Mater. Med 2011, 22, 165–174.
[19]
Peng, F.; Yu, X.; Wei, M. In vitro cell performance on hydroxyapatite particles/poly(L-lactic acid) nanofibrous scaffolds with an excellent particle along nanofiber orientation. Acta Biomater 2011, 7, 2585–2592.
[20]
Athanasiou, K.A.; Zhu, C.; Lanctot, D.R.; Agrawal, C.M.; Wang, X. Fundamentals of biomechanics in tissue engineering of bone. Tissue Eng 2000, 6, 361–381.
[21]
Ma, J.; He, X.; Jabbari, E. Osteogenic differentiation of marrow stromal cells on random and aligned electrospun poly(L-lactide) nanofibers. Ann. Biomed. Eng 2011, 39, 14–25.
[22]
Tran, N.; Webster, T.J. Nanotechnology for bone materials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol 2009, 1, 336–351.
[23]
Ngiam, M.; Nguyen, L.T.; Liao, S.; Chan, C.K.; Ramakrishna, S. Biomimetic nanostructured materials: Potential regulators for osteogenesis? Ann. Acad. Med. Singap 2011, 40, 213–220.
[24]
Kubinová, S.; Syková, E. Nanotechnologies in regenerative medicine. Minim. Invasive Ther. Allied Technol 2010, 19, 144–156.
[25]
Ahmad, Z.; Rasekh, M.; Edirisinghe, M. Electrohydrodynamic direct writing of biomedical polymers and composites. Macromol. Mater. Eng 2010, 295, 315–319.
[26]
Wang, H.; Li, Y.; Zuo, Y.; Li, J.; Ma, S.; Cheng, L. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 2007, 28, 3338–3348.
[27]
Wall, I.; Donos, N.; Carlqvist, K.; Jones, F.; Brett, P. Modified titanium surfaces promote accelerated osteogenic differentiation of mesenchymal stromal cells in vitro. Bone 2009, 45, 17–26.
[28]
Mendon?a, G.; Mendon?a, D.B.; Arag?o, F.J.; Cooper, L.F. The combination of micron and nanotopography by H(2)SO(4)/H(2)O(2) treatment and its effects on osteoblast-specific gene expression of hMSCs. J. Biomed. Mater. Res. A 2010, 94, 169–179.
[29]
le Guéhennec, L.; Soueidan, A.; Layrolle, P.; Amouriq, Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater 2007, 23, 844–854.
[30]
Aparicio, C.; Gil, F.J.; Fonseca, C.; Barbosa, M.; Planell, J.A. Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials 2003, 24, 263–273.
[31]
Müeller, W.D.; Gross, U.; Fritz, T.; Voigt, C.; Fischer, P.; Berger, G.; Rogaschewski, S.; Lange, K.P. Evaluation of the interface between bone and titanium surfaces being blasted by aluminium oxide or bioceramic particles. Clin. Oral Implants Res 2003, 14, 349–356.
[32]
Brett, P.M.; Harle, J.; Salih, V.; Mihoc, R.; Olsen, I.; Jones, F.H.; Tonetti, M. Roughness response genes in osteoblasts. Bone 2004, 35, 124–133.
[33]
Trisi, P.; Lazzara, R.; Rebaudi, A.; Rao, W.; Testori, T.; Porter, S.S. Bone-implant contact on machined and dual acid-etched surfaces after 2 months of healing in the human maxilla. J. Periodontol 2003, 74, 945–956.
[34]
Burgos, P.M.; Rasmusson, L.; Meirelles, L.; Sennerby, L. Early bone tissue responses to turned and oxidized implants in the rabbit tibia. Clin. Implant Dent. Relat. Res 2008, 10, 181–190.
[35]
Wieland, M.; Textor, M.; Chehroudi, B.; Brunette, D.M. Synergistic interaction of topographic features in the production of bone-like nodules on Ti surfaces by rat osteoblasts. Biomaterials 2005, 26, 1119–1130.
[36]
Webster, T.J.; Schadler, L.S.; Siegel, R.W.; Bizios, R. Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue Eng 2001, 7, 291–301.
[37]
Halloran, J.W. Freeform fabrication of ceramics. Br. Ceram. Trans 1999, 98, 299–303.
[38]
Yang, Y.; Kim, K.H.; Ong, J.L. A review on calcium phosphate coatings produced using a sputtering process-an alternative to plasma spraying. Biomaterials 2005, 26, 327–337.
[39]
Liang, H.; Shi, B.; Fairchild, A. Applications of plasma coatings in artificial joints: An overview. Vacuum 2004, 73, 317–326.
[40]
Ahmad, Z.; Thian, E.S.; Huang, J.; Edirisinghe, M.J.; Best, S.M.; Jayasinghe, S.N.; Bonfield, W.; Brooks, R.A.; Rushton, N. Deposition of nano-hydroxyapatite particles utilising direct and transitional electrohydrodynamic processes. J. Mater. Sci. Mater. Med 2008, 19, 3093–3104.
[41]
Balasundaram, G.; Webster, T.J. An overview of nano-polymers for orthopedic applications. Macromol. Biosci 2007, 7, 635–642.
[42]
Paletta, J.R.; Bockelmann, S.; Walz, A.; Theisen, C.; Wendorff, J.H.; Greiner, A.; Fuchs-Winkelmann, S.; Schofer, M.D. RGD-functionalisation of PLLA nanofibers by surface coupling using plasma treatment: Influence on stem cell differentiation. J. Mater. Sci. Mater. Med 2010, 21, 1363–1369.
[43]
Lao, L.; Wang, Y.; Zhu, Y.; Zhang, Y.; Gao, C. Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. J. Mater. Sci. Mater. Med 2011, 22, 1873–1884.
[44]
Sun, F.; Zhou, H.; Lee, J. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater 2011, 7, 3813–3828.
[45]
Luo, C.J.; Nangrejo, M.; Edirisinghe, M. A novel method of selecting solvents for polymer electrospinning. Polymer 2010, 51, 1654–1662.
[46]
Ma, J.; Shi, L.; Shi, Y.; Luo, S.; Xu, J. Pyrolysis of polymethylsilsesquioxane. J. Appl. Polym. Sci 2002, 85, 1077–1086.
Liu, H.; Slamovich, E.B.; Webster, T.J. Increased osteoblast functions among nanophase titania/poly(lactide-co-glycolide) composites of the highest nanometer surface roughness. J. Biomed. Mater. Res. A 2006, 78, 798–807.
[49]
Ning, C.; Zhou, Y. Correlations between the in vitro and in vivo bioactivity of the Ti/HA composites fabricated by a powder metallurgy method. Acta Biomater 2008, 4, 1944–1952.
[50]
de Groot, K.; Geesink, R.; Klein, C.P.A.T.; Serekian, P. Plasma sprayed coatings of hydroxyapatite. J. Biomed. Mater. Res 1987, 21, 1375–1381.
[51]
Yang, Y.C. Influence of residual stress on bonding strength of the plasma-sprayed hydroxyapatite coating after the vacuum heat treatment. Surf. Coat. Technol 2007, 201, 7187–7193.
[52]
Radin, S.R.; Ducheyne, P. Plasma spraying induced changes of calcium phosphate ceramic characteristics and the effect on in vitro stability. J. Mater. Sci. Mater. Med 1992, 3, 33–42.
[53]
Lee, J.J.; Rouhfar, L.; Beirne, O.R. Survival of hydroxyapatite-coated implants: A meta-analytic review. J. Oral Maxillofac. Surg 2000, 58, 1372–1379.
[54]
Wang, X.; Yan, W.; Hayakawa, S.; Tsuru, K.; Osaka, A. Apatite deposition on thermally and anodically oxidized titanium surfaces in a simulated body fluid. Biomaterials 2003, 24, 4631–4637.
[55]
Barrere, F.; Snel, M.; van Blitterswijk, C.; de Groot, K.; Layrolle, P. Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants. Biomaterials 2004, 25, 2901–2910.
[56]
Kokubo, T.; Kushitani, H.; Sakka, S.; Kitsugi, T.; Yamamuro, T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J. Biomed. Mater. Res 1990, 24, 721–734.
[57]
Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915.
[58]
Rasekh, M.; Ahmad, Z.; Day, R.; Wickam, A.; Edirisinghe, M. Direct Writing of Polycaprolactone Polymer for Potential Biomedical Engineering Applications. Adv. Eng. Mater 2011, 13, B296–B305.
[59]
Hench, L.L. Biomaterials: A forecast for the future. Biomaterials 1998, 19, 1419–1423.
[60]
Wei, G.; Ma, P.X. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 2004, 25, 4749–4757.
[61]
Jose, M.V.; Thomas, V.; Xu, Y.; Bellis, S.; Nyairo, E.; Dean, D. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering. Macromol. Biosci 2010, 10, 433–444.
[62]
Nangrejo, M.; Ahmad, Z.; Edirisinghe, M. Ceramic encapsulation with polymer via co-axial electrohydrodynamic jetting. J. Microencapsul 2010, 27, 542–551.
[63]
Xie, J.; Baumann, M.J.; McCabe, L.R. Osteoblasts respond to hydroxyapatite surfaces with immediate changes in gene expression. J. Biomed. Mater. Res. A 2004, 71, 108–117.
[64]
Venugopal, J.; Low, S.; Choon, A.T.; Sampath Kumar, T.S.; Ramakrishna, S. Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. J. Mater. Sci. Mater. Med 2008, 19, 2039–2046.
[65]
Boskey, A.L. Biomineralization: Conflict, challenges and opportunities. J. Cell. Biochem. Suppl 1998, 30, 83–91.
[66]
Venugopal, J.; Prabhakaran, M.P.; Zhang, Y.; Low, S.; Choon, A.T.; Ramakrishna, S. Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering. Philos. Trans. A Math. Phys. Eng. Sci 2010, 368, 2065–2081.
[67]
Harrington, W.F.; Vonhippel, P.H. The structure of collagen and gelatin. Adv. Protein Chem 1961, 16, 1–138.
[68]
Jacobson, R.J.; Brown, L.L.; Hutson, T.B.; Fink, D.J.; Veis, A. Intermolecular interactions in collagen self assembly as revealed by fourier transform infrared spectroscopy. Science 1983, 220, 1288–1290.
[69]
Francis, L.; Venugopal, J.; Prabhakaran, M.P.; Thavasi, V.; Marsano, E.; Ramakrishna, S. Simultaneous electrospin-electrosprayed biocomposite nanofibrous scaffolds for bone tissue regeneration. Acta Biomater 2010, 6, 4100–4109.
[70]
Pieper, J.S.; Hafmans, T.; Veerkamp, J.H.; van Kuppevelt, T.H. Development of tailor-made collagen-glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects. Biomaterials 2000, 21, 581–593.
[71]
Zhang, Y.; Venugopal, J.R.; El-Turki, A.; Ramakrishna, S.; Su, B.; Lim, C.T. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 2008, 29, 4314–4322.
[72]
Venugopal, J.R.; Giri Dev, V.R.; Senthilram, T.; Sathiskumar, D.; Gupta, D.; Ramakrishna, S. Osteoblast mineralization with composite nanofibrous substrate for bone tissue regeneration. Cell Biol. Int 2011, 35, 73–80.
[73]
Gupta, D.; Venugopal, J.; Mitra, S.; Giri Dev, V.R.; Ramakrishna, S. Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts. Biomaterials 2009, 30, 2085–2089.
[74]
Lemmouchi, Y.; Schatch, E. Preparation and in vitro evaluation of biodegradable poly(3-caprolactone-co-D,L lactide) (X–Y) devises containing tryparocidal drugs. J. Control Release 1997, 45, 227–233.
[75]
Mo, X.M.; Xu, X.Y.; Kotaki, M.; Ramakrishna, S. Electrospun P(LLA-CL) nanofiber: A biomimetic extracellular matrix for smooth muscle cells and endothelial proliferation. Biomaterials 2004, 25, 1883–1890.
[76]
Xu, X.Y.; Inai, R.; Kotaki, M.; Ramakrishna, S. Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering. Biomaterials 2004, 25, 877–886.
[77]
He, W.; Yong, T.; Ma, Z.; Inai, R.; Teo, W.E.; Ramakrishna, S. Biodegradable polymer nanofiber mesh to maintain functions of endothelial cells. Tissue Eng 2006, 12, 2457–2466.
[78]
Yang, M.; Ma, Q.J.; Dang, G.T.; Ma, K.; Chen, P.; Zhou, C.Y. In vitro and in vivo induction of bone formation based on ex vivo gene therapy using rat adipose-derived adult stem cells expressing BMP-7. Cytotherapy 2005, 7, 273–281.
[79]
Li, J.; Li, Y.; Ma, S.; Gao, Y.; Zuo, Y.; Hu, J. Enhancement of bone formation by BMP-7 transduced MSCs on biomimetic nano-hydroxyapatite/polyamide composite scaffolds in repair of mandibular defects. J. Biomed. Mater. Res. A 2010, 95, 973–981.
[80]
Ravichandran, R.; Venugopal, J.R.; Sundarrajan, S.; Mukherjee, S.; Ramakrishna, S. Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage. Biomaterials 2012, 33, 846–855.
[81]
Young, M.F.; Kerr, J.M.; Ibaraki, K.; Heegaard, A.M.; Robey, P.G. Structure, expression, and regulation of the major noncollagenous matrix proteins of bone. Clin. Orthop. Relat. Res 1992, 281, 275–294.