Madagascar periwinkle is an ornamental and a medicinal plant, and is also an indicator plant that is highly susceptible to phytoplasma and spiroplasma infections from different crops. Periwinkle lethal yellows, caused by Spiroplasma citri, is one of the most devastating diseases of periwinkle. The response of plants to S. citri infection is very little known at the transcriptome level. In this study, quantitative real-time PCR (RT-qPCR) was used to investigate the expression levels of four selected genes involved in defense and stress responses in naturally and experimentally Spiroplasma citri infected periwinkles. Strictosidine β-glucosidase involved in terpenoid indole alkaloids (TIAs) biosynthesis pathway showed significant upregulation in experimentally and naturally infected periwinkles. The transcript level of extensin increased in leaves of periwinkles experimentally infected by S. citri in comparison to healthy ones. A similar level of heat shock protein 90 and metallothionein expression was observed in healthy, naturally and experimentally spiroplasma-diseased periwinkles. Overexpression of Strictosidine β-glucosidase demonstrates the potential utility of this gene as a host biomarker to increase the fidelity of S. citri detection and can also be used in breeding programs to develop stable disease-resistance varieties.
References
[1]
Canto-Canche, B.B.; Loyola-Vargas, V.M. Multiple forms of NADPH-cytichrome P450 oxidoreductases in the Madagascar periwinkle Catharanthus roseus. In Vitro Cell. Dev. Biol. Plant 2001, 37, 622–628.
[2]
Schr?der, G.; Beck, M.; Eichel, J.; Vetter, H.-P.; Schr?der, L. HSP90 homologue from Madagascar periwinkle (Catharanthus roseus): CDNA sequence, regulation of protein expression and location in the endoplasmic reticulum. Plant Mol. Biol 1993, 23, 583–594.
[3]
Sottomayor, M.; Lopes Cardoso, I.; Pereira, L.G.; Ros Barceló, A. Peroxidase and the biosynthesis of terpenoid indole alkaloids in the medicinal plant Catharanthus roseus (L.) G. Don. Phytochem. Rev 2004, 3, 159–171.
[4]
Luijendijk, T.J.C.; van der Meijden, E.; Verpoorte, R. Involvement of strictosidine as a defensive chemical in Catharanthus roseus. J. Chem. Ecol 1996, 22, 1355–1366.
[5]
Ahrens, U.; Seemüller, R.E. Detection of DNA of plant pathogenic mycoplasma-like organisms by a polymerase chain reaction that amplifies a sequence of the 16S rRNA gene. Phytopathology 1992, 82, 828–832.
[6]
Davis, R.E.; Lee, I.-M. Pathogenicity of Spiroplasmas, Mycoplasma-Like Organisms, and Vascular-Limited Fastidious Wallet Bacteria. In Phytopathogenic Prokaryotes; Mount, M., Lacy, G., Eds.; Academic Press: New York NY, USA, 1982; Volume I, pp. 491–505.
[7]
Deng, S.; Hiruki, C. Genetic relatedness between two nonculturable mycoplasma-like organisms revealed by nucleic acid hybridization and polymerase chain reaction. Phytopathology 1991, 81, 1475–1479.
[8]
Firrao, G.; Gobbi, E.; Loci, R. Use of polymerase chain reaction to produce oligonucleotide probes for mycoplasma-like organisms. Phytopathology 1993, 83, 602–606.
Lee, I.-M.; Gundersen-Rindal, D.E.; Bertaccini, A. Phytoplasma: Ecology and genomic diversity. Phytopathology 1998, 88, 1359–1366.
[11]
Prince, J.P.; Davis, R.E.; Wolf, T.K.; Lee, I.-M.; Mogen, B.; Dally, E.; Bertaccini, A.; Credi, R.; Barba, M. Molecular detection of diverse mycoplasma-like organisms (MLOs) associated with grapevine yellows and their classification with aster yellows, X-disease and elm yellows MLOs. Phytopathology 1993, 83, 1130–1137.
[12]
Bove, J.M.; Renaudin, J.; Saillard, C.; Foissac, X.; Garnier, M. Spiroplasma citri, a plant pathogenic mollicute: Relationships with its two hosts, the plant and the leafhopper vector. Annu. Rev. Phytopathol 2003, 41, 483–500.
[13]
Saglio, P.; L’Hospital, M.; Lafléche, D.; Dupont, G.; Bové, J.M.; Tully, J.G.; Freundt, E.A. Spiroplasma citri gen. and sp. n.: A mycoplasma-like organism associated with stubborn disease of citrus. Int. J. Syst. Bacteriol 1973, 23, 191–204.
[14]
Chang, C.J. Pathogenicity of aster yellows phytoplasma and Spiroplasma citri on periwinkle. Phytopathology 1998, 88, 1347–1350.
[15]
Daniels, M.J. Mechanisms of Spiroplasma Pathogenicity. In The Mycoplasmas; Whitcomb, R.F., Tully, J.G., Eds.; Academic Press: New York NY, USA, 1979; Volume 3, pp. 209–227.
[16]
Markham, P.G.; Townsend, R. Transmission of Spiroplasma citri to plants. Colloq. INSERM 1974, 33, 201–206.
[17]
Nejat, N.; Vadamalai, G.; Sijam, K.; Dickinson, M. First report of Spiroplasma citri associated with periwinkle lethal yellows in Southeast Asia. Plant Dis 2011, 95, 1312.
[18]
Whiteside, J.O.; Garney, S.M.; Timmer, L.W. Compendium of Citrus Diseases; APS Press: St. Paul, MN, USA, 1988.
[19]
Choi, Y.H.; Tapias, E.C.; Kim, H.K.; Lefeber, A.W.M.; Erkelens, C.; Verhoeven, J.T.J.; Brzin, J.; Zel, J.; Verpoorte, R. Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis. Plant Physiol 2004, 135, 2398–410.
[20]
Lepka, P.; Stitt, M.; Moll, E.; Seemüller, E. Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiol. Mol. Plain Pathol 1999, 5, 59–68.
[21]
Machenaud, J.; Rapha?l, H.; Dieuaide-Noubhani, M.; Pracros, P.; Renaudin, J.; Eveillard, S. Gene expression and enzymatic activity of invertases and sucrose synthase in Spiroplasma citri or stolbur phytoplasma infected plants. Bull Insectol 2007, 60, 219–220.
[22]
Chang, C.J. Nutrition and Cultivation of Spiroplasmas. In The Mycoplasma; Whitcomb, R.F., Tully, J.G., Eds.; Academic Press: New York NY, USA, 1989; Volume 5, pp. 201–241.
[23]
André, A.; Maucourt, M.; Moing, A.; Rolin, D.; Renaudin, J. Sugar import and phytopathogenicity of Spiroplasma citri: Glucose and fructose play distinct roles. Mol. Plant Microbe Interact. 2005, 18, 33–42.
[24]
Renaudin, J. Sugar metabolism and pathogenicity of Spiroplasma citri. J. Plant Pathol 2006, 88, 129–139.
[25]
Carginale, V.; Luca, V.; Capasso, C.; Baldi, MR.; Maria, G.; Pastore, M.; Bertaccini, A.; Carrara, L.; Capasso, A. Effect of pear decline phytoplasma on gene expression in Catharanthus roseus. Bull Insectol 2007, 60, 213–214.
[26]
Carginale, V.; Maria, G.; Capasso, C.; Ionata, E.; la Cara, F.; Pastore, M.; Bertaccini, A.; Capasso, A. Identification of genes expressed in response to phytoplasma infection in leaves of Primus armeniaca by messenger RNA differential display. Gene 2004, 332, 29–34.
[27]
Chen, W.Y.; Lin, C.P. Characterization of Catharanthus roseus genes regulated differentially by peanut witches’ broom phytoplasma infection. J. Phytopathol. 2011, 159, 505–510.
[28]
Hren, M.; Ravnikar, M.; Brzin, J.; Ermacora, P.; Carraro, L.; Bianco, P.A.; Casati, P.; Borgo, M.; Angelini, E.; Rotter, A.; Gruden, K. Induced expression of sucrose synthase and alcohol dehydrogenase I genes in phytoplasma-infected grapevine plants grown in the field. Plant Pathol 2009, 58, 170–180.
[29]
Nicolaisen, M.; Horvath, D.P. A branch-inducing phytoplasma in Euphorbia pulcherrima is associated with changes in expression of host genes. J. Phytopathol 2008, 156, 403–407.
[30]
Pracros, P.; Renaudin, J.; Eveillard, S.; Mouras, A.; Hernould, M. Tomato flower abnormalities induced by stolbur phytoplasma infection are associated with changes of expression of floral development genes. Mol. Plant Microbe Interact 2006, 19, 62–68.
[31]
Vidhyasekaran, P. Concise Encyclopedia of Plant Pathology; Haworth Press: Philadelphia, PA, USA, 2004; pp. 511–517.
[32]
Roberts, K.; Shirsat, A.H. Increased extensin levels in Arabidopsis affect inflorescence stem thickening and height. J. Exp. Bot 2006, 57, 537–545.
English, T.E.; Storey, K.B. Freezing and anoxia stresses induce expression of metallothionein in the foot muscle and hepatopancreas of the marine gastropod Littorina littorea. J. Exp. Biol 2003, 206, 2517–2524.
[36]
Ukamaka, A.M.; Obinnaya, C.L.; Adebayo, O.; Miriam, I.-E. Metallothionein induction in edible mangrove periwinkles, Tympanotonus fuscatus var radula and Pachymelania aurita exposed to oily drill cuttings. J. Am. Sci 2010, 6, 89–97.
[37]
Viarengo, A.; Burlando, B.; Cavaletto, M.; Marchi, B.; Ponzano, E.; Blasco, J. Role of metallothionein against oxidative stress in the mussel Mytilus galloprovincialis. Am. J. Physiol 1999, 277, R1612–R1619.
[38]
Gupta, R.S. Phylogenetic analysis of the 90 KD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol. Biol. Evol 1995, 12, 1063–1073.
[39]
Koide, T.; Vêncio, R.Z.N.; Gomes, S.L. Global gene expression analysis of the heat shock response in the phytopathogen Xylella fastidiosa. J. Bacteriol 2006, 188, 5821–5830.
[40]
Csermely, P.; Schnaider, T.; Soti, C.; Prohaszka, Z.; Nardai, G. The 90-kDa molecular chaperone family: Structure, function, and clinical applications, a comprehensive review. Pharmacol. Ther 1998, 79, 129–168.
Liu, D.; Zhang, X.; Cheng, Y.; Takano, T.; Liu, S. rHsp90 gene expression in response to several environmental stresses in rice (Oryza sativa L.). Plant Physiol. Biochem 2006, 44, 380–386.
[43]
Faure, D. The family-3 glycoside hydrolases: From housekeeping functions to host-microbe interactions. Appl. Environ. Microbiol 2002, 68, 1485–1490.
[44]
Henrissat, B.; Coutinho, P.M.; Davies, G.J. A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. Plant Mol. Biol 2001, 7, 55–72.
[45]
Luca, V.D.; Capasso, C.; Capasso, A.; Pastore, M.; Carginale, V. Gene expression profiling of phytoplasma-infected Madagascar periwinkle leaves using differential display. Mol. Biol. Rep 2011, 38, 2993–3000.
[46]
Minic, Z. Physiological roles of plant glycoside hydrolases. Planta 2008, 227, 723–740.
[47]
Morant, A.V.; Jorgensen, K.; Jorgensen, C.; Paquette, S.M.; Sanchez-Perez, R.; Moller, B.L.; Bak, S. beta-glucosidases as detonators of plant chemical defense. Phytochemistry 2008, 69, 1795–1813.
[48]
Kreps, J.A.; Wu, Y.; Chang, H.S.; Zhu, T.; Wang, X.; Harper, J.F. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 2002, 130, 2129–2141.
[49]
Barleban, L.; Panjikar, S.; Ruppert, M.; Koepke, J.; St?ckigt, J. Molecular architecture of strictosidine glucosidase: The gateway to the biosynthesis of the monoterpenoid indole alkaloid family. Plant Cell 2007, 19, 2886–2897.
[50]
Czjzek, M.; Cicek, M.; Zamboni, V.; Burmeister, W.P.; Bevan, D.R.; Henrissat, B.; Esen, A. Crystal structure of a monocotyledon (maize ZMGlu1) betaglucosidase and a model of its complex with p-nitrophenyl beta-D-thioglucoside. Biochem. J 2001, 354, 37–46.
[51]
Niemeyer, H.M. Hydroxamic acids (4-hydroxy-1,4-Benzoxazin-3-Ones), defense chemicals in the gramineae. Phytochemistry 1988, 27, 3349–3358.
[52]
Poulton, J.E. Cyanogenesis in plants. Plant Physiol 1990, 94, 401–405.
[53]
Guirimand, G.; Courdavault, V.; Lanoue, A.; Mahroug, S.; Guihur, A.; Blanc, N.; Giglioli-Guivarc’h, N.; St-Pierre, B.; Burlat, V. Strictosidine activation in Apocynaceae: Towards a “nuclear time bomb”. BMC Plant Biol 2010, 10, doi:10.1186/1471-2229-10-182..
[54]
Stoeckigt, J.; Zenk, M.H. Strictosidine (isovincoside): The key intermediate in the biosynthesis of monoterpenoid indole alkaloids. J. Chem. Soc. Chem. Commun 1977, 18, 646–648.
[55]
Treimer, J.F.; Zenk, M.H. Purification and properties of strictosidine synthase, the key enzyme in indole alkaloid formation. Eur. J. Biochem 1979, 101, 225–233.
[56]
Geerling, A.; Iba?ez, M.M.L.; Memelink, J.; Heijden, R.; Verpoorte, R. Molecular cloning and analysis of strictosidine β-D-glucosidase, an enzyme in terpnoid indol alkaloids biosynthesis in Catharanthus roseus. J. Biol. Chem 2000, 275, 3051–3056.
[57]
Wei, S. Methyl jasmonic acid induced expression pattern of terpenoid indole alkaloid pathway genes in Catharanthus roseus seedlings. Plant Growth Regul 2010, 61, 243–251.
[58]
Albertazzi, G.; Milc, J.; Caffagni, A.; Francia, E.; Roncaglia, E.; Ferrari, F.; Tagliafico, E.; Stefani, E.; Pecchioni, N. Gene expression in grapevine cultivars in response to Bois Noir phytoplasma infection. Plant Sci 2009, 176, 792–804.
[59]
Pasquer, F.; Ochsner, U.; Zarn, J.; Keller, B. Common and distinct gene expression patterns induced by the herbicides 2,4-dichlorophenoxyacetic acid, conidon-ethyl and tribenuron-methyl in wheat. Pest Manag. Sci 2006, 62, 1155–1167.
[60]
Lee, I.-M.; Bottner, K.D.; Munyaneza, J.E.; Davis, R.E.; Crosslin, J.M.; du Toit, L.J.; Crosby, T. Carrot purple leaf: A new spiroplasmal disease associated with carrots in Washington State. Plant Dis 2006, 90, 989–993.
[61]
Kiefer, E.; Heller, W.; Ernst, D. A simple and efficient protocol for isolation of functional RNA from plant tissues rich in secondary metabolites. Plant Mol. Biol. Report 2000, 18, 33–39.
[62]
Rosen, S.; Skaletsky, H. Primer 3 on the WWW for general Users and for Biologist Programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology; Krawtez, S., Misener, S., Eds.; Humana: Totowa, NJ, USA, 2000; pp. 365–386.