Two different conformational isoforms or amyloid strains of insulin with different cytotoxic capacity have been described previously. Herein these filamentous and fibrillar amyloid states of insulin were investigated using biophysical and spectroscopic techniques in combination with luminescent conjugated oligothiophenes (LCO). This new class of fluorescent probes has a well defined molecular structure with a distinct number of thiophene units that can adopt different dihedral angles depending on its binding site to an amyloid structure. Based on data from surface charge, hydrophobicity, fluorescence spectroscopy and imaging, along with atomic force microscopy (AFM), we deduce the ultrastructure and fluorescent properties of LCO stained insulin fibrils and filaments. Combined total internal reflection fluorescence microscopy (TIRFM) and AFM revealed rigid linear fibrous assemblies of fibrils whereas filaments showed a short curvilinear morphology which assemble into cloudy deposits. All studied LCOs bound to the filaments afforded more blue-shifted excitation and emission spectra in contrast to those corresponding to the fibril indicating a different LCO binding site, which was also supported by less efficient hydrophobic probe binding. Taken together, the multi-tool approach used here indicates the power of ultrastructure identification applying AFM together with LCO fluorescence interrogation, including TIRFM, to resolve structural differences between amyloid states.
References
[1]
Chiti, F.; Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem 2006, 75, 333–366.
[2]
Sipe, J.D.; Cohen, A.S. Review: History of the amyolid fibril. J. Struct. Biol 2000, 130, 88–98.
[3]
Selkoe, D.J. The molecular pathology of Alzheimer’s disease. Neuron 1991, 6, 487–498.
[4]
Westermark, P. Aspects on human amyloid forms and their fibril polypeptides. FEBS J 2005, 272, 5942–5949.
[5]
Bucciantini, M.; Giannoni, E.; Chiti, F.; Baroni, F.; Formigli, L.; Zurdo, J.; Taddei, N.; Ramponi, G.; Dobson, C.M.; Stefani, M. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 2002, 416, 507–511.
[6]
Wiréhn, J.; Carlsson, K.; Herland, A.; Persson, E.; Carlsson, U.; Svensson, M.; Hammarstrom, P. Activity, folding, misfolding, and aggregation in vitro of the naturally occurring human tissue factor mutant R200W. Biochemistry 2005, 44, 6755–6763.
[7]
Dobson, C.M. Protein misfolding, evolution and disease. Trends Biochem. Sci 1999, 24, 329–332.
[8]
Ross, C.A.; Poirier, M.A. Protein aggregation and neurodegenerative disease. Nat. Med 2004, 10, S10–S17.
[9]
Uversky, V.N.; Fink, A.L. Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochim. Biophys. Acta 2004, 1698, 131–153.
[10]
Sorgjerd, K.; Klingstedt, T.; Lindgren, M.; K?gedal, K.; Hammarstr?m, P. Prefibrillar transthyretin oligomers and cold stored native tetrameric transthyretin are cytotoxic in cell culture. Biochem. Biophys. Res. Commun 2008, 377, 1072–1078.
[11]
Gharibyan, A.L.; Zamotin, V.; Yanamandra, K.; Moskaleva, O.S.; Margulis, B.A.; Kostanyan, I.A.; Morozova-Roche, L.A. Lysozyme amyloid oligomers and fibrils induce cellular death via different apoptotic/necrotic pathways. J. Mol. Biol 2007, 365, 1337–1349.
[12]
Bamberger, M.E.; Harris, M.E.; McDonald, D.R.; Husemann, J.; Landreth, G.E. A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation. J. Neurosci 2003, 23, 2665–2674.
[13]
Vestergaard, B.; Groenning, M.; Roessle, M.; Kastrup, J.S.; van de Weert, M.; Flink, J.M.; Frokjaer, S.; Gajhede, M.; Svergun, D.I. A helical structural nucleus is the primary elongating unit of insulin amyloid fibrils. PLoS Biol 2007, 5, e134.
[14]
Petkova, A.T.; Ishii, Y.; Balbach, J.J.; Antzutkin, O.N.; Leapman, R.D.; Delaglio, F.; Tycko, R. A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl. Acad. Sci. USA 2002, 99, 16742–16747.
[15]
Antzutkin, O.N.; Balbach, J.J.; Tycko, R. Site-specific identification of non-β-strand conformations in Alzheimer’s b-amyloid fibrils by solid-state NMR. Biophys. J 2003, 84, 3326–3335.
[16]
Naiki, H.; Higuchi, K.; Hosokawa, M.; Takeda, T. Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavine T. Anal. Biochem 1989, 177, 244–249.
[17]
Klunk, W.E.; Pettergrew, J.W.; Abraham, D.J. Quantitative evaluation of congo red binding to amyloid-like proteins with a beta-pleated sheet conformation. J. Histochem. Cytochem 1995, 37, 1273–1281.
[18]
Lindgren, M.; Sorgjerd, K.; Hammarstrom, P. Detection and characterization of aggregates, prefibrillar amyloidogenic oligomers, and protofibrils using fluorescence spectroscopy. Biophys. J 2005, 88, 4200–4212.
[19]
Alizadeh-Pasdar, N.; Li-Chan, E.C.Y. Comparison of protein surface hydrophobicity measured at various pH values using three different fluorescent probes. J. Agric. Food Chem 2000, 48, 328–334.
[20]
Wierenga, P.A.; Meinders, M.B.J.; Egmond, M.R.; Voragen, A.G.J. Protein exposed hydrophobicity reduces the kinetic barrier for adsorption of ovalbumin to the air-water interface. Langmuir 2003, 19, 8964–8970.
Orte, A.; Birkett, N.R.; Clarke, R.W.; Devlin, G.L.; Dobson, C.M.; Klenerman, D. Direct characterization of amyloidogenic oligomers by single-molecule detection. Proc. Natl. Acad. Sci. USA 2008, 105, 14424–14429.
[23]
Nilsson, K.P.R. Small organic probes as amyloid specific ligands—Past and recent molecular scaffolds. FEBS Lett 2009, 583, 2593–2599.
[24]
Nilsson, K.P.R.; Olsson, J.D.M.; Stabo-Eeg, F.; Lindgren, M.; Konradsson, P.; Inganas, O. Chiral recognition of a synthetic peptide using enantiomeric conjugated polyelectrolytes and optical spectroscopy. Macromolecules 2005, 38, 6813–6821.
[25]
?slund, A.; Herland, A.; Hammarstr?m, P.; Nilsson, K.P.R.; Jonsson, B.H.; Konradsson, P. Studies of luminescent conjugated polythiophene derivatives: Enhanced spectral discrimination of protein conformational states. Bioconjug. Chem 2007, 18, 1860–1868.
[26]
?slund, A.; Nilsson, K.P.R.; Konradsson, P. Fluorescent oligo and poly-thiophenes and their utilization for recording biological events of diverse origin—when organic chemistry meets biology. J. Chem. Biol 2009, 2, 161–175.
[27]
Sigurdson, C.J.; Nilsson, K.P.R.; Hornemann, S.; Manco, G.; Polymenidou, M.; Schwarz, P.; Leclerc, M.; Hammarstr?m, P.; Wüthrich, K.; Aguzzi, A. Prion strain discrimination using luminescent conjugated polymers. Nat. Methods 2007, 12, 1023–1030.
[28]
Sigurdson, C.J.; Nilsson, K.P.R.; Hornemann, S.; Heikenwalder, M.; Manco, G.; Schwarz, P.; Ott, D.; Rülicke, T.; Liberski, P.P.; Julius, C.; et al. De novo generation of a transmissible spongiform encephalopathy by mouse transgenesis. Proc. Natl. Acad. Sci. USA 2009, 106, 304–309.
[29]
Nilsson, K.P.R.; ?slund, A.; Berg, I.; Nystr?m, S.; Konradsson, P.; Herland, A.; Ingan?s, O.; Stabo-Eeg, F.; Lindgren, M.; Westermark, G.T.; et al. Imaging distinct conformational states of amyloid-beta fibrils in Alzheimer’s disease using novel luminescent probes. ACS Chem. Biol 2007, 2, 553–560.
[30]
Nilsson, K.P.R.; Hammarstr?m, P.; Ahlgren, F.; Herland, A.; Schnell, E.A.; Lindgren, M.; Westermark, G.T.; Ingan?s, O. Conjugated polyelectrolytes—conformation-sensitive optical probes for staining and characterization of amyloid deposits. ChemBioChem 2006, 7, 1096–1104.
[31]
Stabo-Eeg, F.; Lindgren, M.; Nilsson, K.P.R.; Ingan?s, O.; Hammarstr?m, P. Quantum efficiency and two-photon absorption cross-section of conjugated polyelectrolytes used for protein conformation measurements with applications on amyloid structures. Chem. Phys 2007, 336, 121–126.
[32]
?slund, A.; Sigurdson, C.J.; Klingstedt, T.; Grathwohl, S.; Bolmont, T.; Dickstein, D.L.; Glimsdal, E.; Prokop, S.; Lindgren, M.; Konradsson, P.; et al. Novel pentameric thiophene derivatives for in vitro and in vivo optical imaging of a plethora of protein aggregates in cerebral amyloidoses. ACS Chem. Biol 2009, 4, 673–684.
[33]
Zako, T.; Sakono, M.; Hashimoto, N.; Ihara, M.; Maeda, M. Bovine insulin filaments induced by reducing disulfide bonds show a different morphology, secondary structure, and cell toxicity from intact insulin amyloid fibrils. Biophys. J 2009, 96, 3331–3340.
[34]
Klingstedt, T.; ?slund, A.; Simon, R.A.; Johansson, L.B.G.; Mason, J.J.; Nystr?m, S.; Hammarstr?m, P.; Nilsson, K.P.R. Synthesis of a library of oligothiophenes and their utilization as fluorescent ligands for spectral assignment of protein aggregates. Org. Biomol. Chem 2011, 9, 8356–8370.
[35]
Kumar, S.; Nussinov, R. Close-range electrostatic interactions in proteins. ChemBioChem 2002, 3, 604–617.
[36]
Horovitz, A.; Serrano, L.; Avron, B.; Bycroft, M.; Fersht, A.R. Strength and co-operativity of contributions of surface salt bridges to protein stability. J. Mol. Biol 1990, 216, 1031–1044.
[37]
Yang, H.; Fung, S.Y.; Pritzker, M.; Chen, P. Surface-assisted assembly of an ionic-complementary peptide: Controllable growth of nanofibers. J. Am. Chem. Soc 2007, 129, 12200–122010.
[38]
Sletmoen, M.; Skj?k-Br?k, G.; Stokke, B.T. Single-molecular pair unbinding studies of mannuronan C-5 epimerase AlgE4 and its polymer substrate. Biomacromolecules 2004, 5, 1288–1295.
[39]
Lindgren, M.; Hammarstr?m, P. Amyloid oligomers: Spectroscopic characterization of amyloidogenic protein states. FEBS J 2010, 277, 1380–1388.
[40]
Fukuma, T.; Mostaert, A.S.; Serpell, L.C.; Jarvis, S.P. Revealing molecular-level surface structure of amyloid fibrils in liquid by means of frequency modulation atomic force microscopy. Nanotechnology 2008, 19, 384010.
[41]
Blackley, H.K.L.; Sanders, G.H.W.; Davies, M.C.; Roberts, C.J.; Tendler, S.J.B.; Wilkinson, M.J. In situ atomic force microscopystudy of β-amyloid fibrillization. J. Mol. Biol 2000, 298, 833–840.
[42]
Adamcik, J.; Jung, J.-M.; Flakowski, J.; De Los Rios, P.; Dietler, G.; Mezzenge, R. Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. Nat. Nanotechnol 2010, 5, 423–428.
[43]
Sedman, V.L.; Adler-Abramovich, L.; Allen, S.; Gazit, E.; Tendler, S.J.B. Direct observation of the release of phenylalanine from diphenylalanine nanotubes. J. Am. Chem. Soc 2006, 128, 6903–6908.
[44]
Jimenez, J.L.; Nettleton, E.J.; Bouchard, M.; Robinson, C.V.; Dobson, C.M.; Saibil, H.R. The protofilament structure of insulin amyloid fibrils. Proc. Natl. Acad. Sci. USA 2002, 99, 9196–9201.
[45]
Zako, T.; Sakono, M.; Kobayashi, T.; S?rgerd, K.; Nilsson, K.P.R.; Hammarstr?m, P.; Lindgren, M.; Maeda, M. Cell Interaction study of amyloid by using luminescent conjugated polythiophene: Implication that amyloid cytotoxicity is correlated with prolonged cellular binding. ChemBioChem 2012, doi:10.1002/cbic.201100467..
[46]
Brange, J.; Andersen, L.; Laursen, E.D.; Meyn, G.; Rasmussen, E. Toward understanding insulin fibrillation. J. Pharmac. Sci 1997, 86, 517–525.
[47]
Nielsen, L.; Frokjaer, S.; Carpenter, J.F.; Brange, J. Studies of the structure of insulin fibrils by Fourier transform infrared (FTIR) spectroscopy and electron microscopy. J. Pharmac. Sci 2001, 90, 29–37.