Motor neurons typically have very long axons, and fine-tuning axonal transport is crucial for their survival. The obstruction of axonal transport is gaining attention as a cause of neuronal dysfunction in a variety of neurodegenerative motor neuron diseases. Depletions in dynein and dynactin-1, motor molecules regulating axonal trafficking, disrupt axonal transport in flies, and mutations in their genes cause motor neuron degeneration in humans and rodents. Axonal transport defects are among the early molecular events leading to neurodegeneration in mouse models of amyotrophic lateral sclerosis (ALS). Gene expression profiles indicate that dynactin-1 mRNA is downregulated in degenerating spinal motor neurons of autopsied patients with sporadic ALS. Dynactin-1 mRNA is also reduced in the affected neurons of a mouse model of spinal and bulbar muscular atrophy, a motor neuron disease caused by triplet CAG repeat expansion in the gene encoding the androgen receptor. Pathogenic androgen receptor proteins also inhibit kinesin-1 microtubule-binding activity and disrupt anterograde axonal transport by activating c-Jun N-terminal kinase. Disruption of axonal transport also underlies the pathogenesis of spinal muscular atrophy and hereditary spastic paraplegias. These observations suggest that the impairment of axonal transport is a key event in the pathological processes of motor neuron degeneration and an important target of therapy development for motor neuron diseases.
References
[1]
Holzbaur, E.L. Motor neurons rely on motor proteins. Trends Cell Biol 2004, 14, 233–240.
[2]
Chao, M.V. Retrograde transport redux. Neuron 2003, 39, 1–2.
[3]
Hollenbeck, P.J.; Saxton, W.M. The axonal transport of mitochondria. J. Cell Sci 2005, 118, 5411–5419.
[4]
Hollenbeck, P.J. The pattern and mechanism of mitochondrial transport in axons. Front Biosci 1996, 1, d91–d102.
[5]
El-Kadi, A.M.; Soura, V.; Hafezparast, M. Defective axonal transport in motor neuron disease. J. Neurosci. Res 2007, 85, 2557–2566.
[6]
Fichera, M.; Lo Giudice, M.; Falco, M.; Sturnio, M.; Amata, S.; Calabrese, O.; Bigoni, S.; Calzolari, E.; Neri, M. Evidence of kinesin heavy chain (kif5a) involvement in pure hereditary spastic paraplegia. Neurology 2004, 63, 1108–1110.
[7]
Hafezparast, M.; Klocke, R.; Ruhrberg, C.; Marquardt, A.; Ahmad-Annuar, A.; Bowen, S.; Lalli, G.; Witherden, A.S.; Hummerich, H.; Nicholson, S.; et al. Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 2003, 300, 808–812.
[8]
Puls, I.; Jonnakuty, C.; LaMonte, B.H.; Holzbaur, E.L.; Tokito, M.; Mann, E.; Floeter, M.K.; Bidus, K.; Drayna, D.; Oh, S.J.; et al. Mutant dynactin in motor neuron disease. Nat. Genet 2003, 33, 455–456.
Kieran, D.; Hafezparast, M.; Bohnert, S.; Dick, J.R.; Martin, J.; Schiavo, G.; Fisher, E.M.; Greensmith, L. A mutation in dynein rescues axonal transport defects and extends the life span of ALS mice. J. Cell Biol 2005, 169, 561–567.
Chen, X.J.; Levedakou, E.N.; Millen, K.J.; Wollmann, R.L.; Soliven, B.; Popko, B. Proprioceptive sensory neuropathy in mice with a mutation in the cytoplasmic Dynein heavy chain 1 gene. J. Neurosci 2007, 27, 14515–14124.
[15]
Gill, S.R.; Schroer, T.A.; Szilak, I.; Steuer, E.R.; Sheetz, M.P.; Cleveland, D.W. Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J. Cell Biol 1991, 115, 1639–1650.
[16]
Karki, S.; Holzbaur, E.L. Affinity chromatography demonstrates a direct binding between cytoplasmic dynein and the dynactin complex. J. Biol. Chem 1995, 270, 28806–28811.
[17]
Haghnia, M.; Cavalli, V.; Shah, S.B.; Schimmelpfeng, K.; Brusch, R.; Yang, G.; Herrera, C.; Pilling, A.; Goldstein, L.S. Dynactin is required for coordinated bidirectional motility, but not for dynein membrane attachment. Mol. Biol. Cell 2007, 18, 2081–2089.
[18]
Levy, J.R.; Sumner, C.J.; Caviston, J.P.; Tokito, M.K.; Ranganathan, S.; Ligon, L.A.; Wallace, K.E.; LaMonte, B.H.; Harmison, G.G.; Puls, I.; et al. A motor neuron disease-associated mutation in p150glued perturbs dynactin function and induces protein aggregation. J. Cell Biol 2006, 172, 733–745.
[19]
Chevalier-Larsen, E.S.; Wallace, K.E.; Pennise, C.R.; Holzbaur, E.L. Lysosomal proliferation and distal degeneration in motor neurons expressing the g59s mutation in the p150glued subunit of dynactin. Hum. Mol. Genet 2008, 17, 1946–1955.
[20]
Laird, F.M.; Farah, M.H.; Ackerley, S.; Hoke, A.; Maragakis, N.; Rothstein, J.D.; Griffin, J.; Price, D.L.; Martin, L.J.; Wong, P.C. Motor neuron disease occurring in a mutant dynactin mouse model is characterized by defects in vesicular trafficking. J. Neurosci 2008, 28, 1997–2005.
[21]
Lai, C.; Lin, X.; Chandran, J.; Shim, H.; Yang, W.J.; Cai, H. The g59s mutation in p150 (glued) causes dysfunction of dynactin in mice. J. Neurosci 2007, 27, 13982–13990.
[22]
Miki, H.; Setou, M.; Kaneshiro, K.; Hirokawa, N. All kinesin superfamily protein, kif, genes in mouse and human. Proc. Natl. Acad. Sci. USA 2001, 98, 7004–7011.
[23]
Hirokawa, N.; Takemura, R. Molecular motors and mechanisms of directional transport in neurons. Nat. Rev. Neurosci 2005, 6, 201–214.
[24]
Hirokawa, N.; Niwa, S.; Tanaka, Y. Molecular motors in neurons: Transport mechanisms and roles in brain function, development, and disease. Neuron 2010, 68, 610–638.
[25]
Reid, E.; Kloos, M.; Ashley-Koch, A.; Hughes, L.; Bevan, S.; Svenson, I.K.; Graham, F.L.; Gaskell, P.C.; Dearlove, A.; Pericak-Vance, M.A.; et al. A kinesin heavy chain (kif5a) mutation in hereditary spastic paraplegia (spg10). Am. J. Hum. Genet 2002, 71, 1189–1194.
[26]
Song, H.; Endow, S.A. Decoupling of nucleotide- and microtubule-binding sites in a kinesin mutant. Nature 1998, 396, 587–590.
[27]
Hirokawa, N.; Noda, Y. Intracellular transport and kinesin superfamily proteins, kifs: Structure, function, and dynamics. Physiol. Rev 2008, 88, 1089–1118.
[28]
Shi, P.; Strom, A.L.; Gal, J.; Zhu, H. Effects of als-related SOD1 mutants on dynein- and kif5-mediated retrograde and anterograde axonal transport. Biochim. Biophys. Acta 2010, 1802, 707–716.
[29]
Morfini, G.; Pigino, G.; Szebenyi, G.; You, Y.; Pollema, S.; Brady, S.T. Jnk mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal transport. Nat. Neurosci 2006, 9, 907–916.
Garcia, M.L.; Lobsiger, C.S.; Shah, S.B.; Deerinck, T.J.; Crum, J.; Young, D.; Ward, C.M.; Crawford, T.O.; Gotow, T.; Uchiyama, Y.; et al. Nf-m is an essential target for the myelin-directed “Outside-in” Signaling cascade that mediates radial axonal growth. J. Cell Biol 2003, 163, 1011–1020.
[32]
Bruijn, L.I.; Miller, T.M.; Cleveland, D.W. Unraveling the mechanisms involved in motor neuron degeneration in als. Annu. Rev. Neurosci 2004, 27, 723–749.
[33]
Xia, C.H.; Roberts, E.A.; Her, L.S.; Liu, X.; Williams, D.S.; Cleveland, D.W.; Goldstein, L.S. Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain kif5a. J. Cell Biol 2003, 161, 55–66.
[34]
Koehnle, T.J.; Brown, A. Slow axonal transport of neurofilament protein in cultured neurons. J. Cell Biol 1999, 144, 447–458.
[35]
Mersiyanova, I.V.; Perepelov, A.V.; Polyakov, A.V.; Sitnikov, V.F.; Dadali, E.L.; Oparin, R.B.; Petrin, A.N.; Evgrafov, O.V. A new variant of charcot-marie-tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene. Am. J. Hum. Genet 2000, 67, 37–46.
[36]
Perez-Olle, R.; Jones, S.T.; Liem, R.K. Phenotypic analysis of neurofilament light gene mutations linked to charcot-marie-tooth disease in cell culture models. Hum. Mol. Genet 2004, 13, 2207–2220.
[37]
Perez-Olle, R.; Lopez-Toledano, M.A.; Goryunov, D.; Cabrera-Poch, N.; Stefanis, L.; Brown, K.; Liem, R.K. Mutations in the neurofilament light gene linked to charcot-marie-tooth disease cause defects in transport. J. Neurochem 2005, 93, 861–874.
[38]
Magrane, J.; Manfredi, G. Mitochondrial function, morphology, and axonal transport in amyotrophic lateral sclerosis. Antioxid. Redox. Signal 2009, 11, 1615–1626.
[39]
Bilsland, L.G.; Sahai, E.; Kelly, G.; Golding, M.; Greensmith, L.; Schiavo, G. Deficits in axonal transport precede als symptoms in vivo. Proc. Natl. Acad. Sci. USA 2010, 107, 20523–20528.
[40]
Collard, J.F.; Cote, F.; Julien, J.P. Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature 1995, 375, 61–64.
[41]
Sasaki, S.; Iwata, M. Impairment of fast axonal transport in the proximal axons of anterior horn neurons in amyotrophic lateral sclerosis. Neurology 1996, 47, 535–540.
[42]
Wong, P.C.; Pardo, C.A.; Borchelt, D.R.; Lee, M.K.; Copeland, N.G.; Jenkins, N.A.; Sisodia, S.S.; Cleveland, D.W.; Price, D.L. An adverse property of a familial als-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 1995, 14, 1105–1116.
[43]
Kong, J.; Xu, Z. Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J. Neurosci 1998, 18, 3241–3250.
[44]
Sasaki, S.; Iwata, M. Mitochondrial alterations in the spinal cord of patients with sporadic amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol 2007, 66, 10–16.
[45]
Zhu, Y.B.; Sheng, Z.H. Increased axonal mitochondrial mobility does not slow als-like disease in mutant SOD1 mice. J. Biol. Chem 2011, 26, 23432–23440.
[46]
d’Ydewalle, C.; Krishnan, J.; Chiheb, D.M.; Van Damme, P.; Irobi, J.; Kozikowski, A.P.; Berghe, P.V.; Timmerman, V.; Robberecht, W.; Van Den Bosch, L. Hdac6 inhibitors reverse axonal loss in a mouse model of mutant hspb1-induced charcot-marie-tooth disease. Nat. Med 2011, 17, 968–974.
Komatsu, M.; Wang, Q.J.; Holstein, G.R.; Friedrich, V.L., Jr; Iwata, J.; Kominami, E.; Chait, B.T.; Tanaka, K.; Yue, Z. Essential role for autophagy protein atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc. Natl. Acad. Sci. USA 2007, 104, 14489–14494.
[49]
Yu, W.H.; Cuervo, A.M.; Kumar, A.; Peterhoff, C.M.; Schmidt, S.D.; Lee, J.H.; Mohan, P.S.; Mercken, M.; Farmery, M.R.; Tjernberg, L.O.; et al. Macroautophagy—a novel beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J. Cell Biol 2005, 171, 87–98.
[50]
Jellinger, K.A. Basic mechanisms of neurodegeneration: a critical update. J. Cell Mol. Med 2010, 14, 457–487.
[51]
Sapp, E.; Schwarz, C.; Chase, K.; Bhide, P.G.; Young, A.B.; Penney, J.; Vonsattel, J.P.; Aronin, N.; DiFiglia, M. Huntingtin localization in brains of normal and huntington’s disease patients. Ann. Neurol 1997, 42, 604–612.
[52]
Kimura, S.; Noda, T.; Yoshimori, T. Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct. Funct 2008, 33, 109–122.
[53]
Yang, Y.; Xu, K.; Koike, T.; Zheng, X. Transport of autophagosomes in neurites of pc12 cells during serum deprivation. Autophagy 2008, 4, 243–245.
[54]
Yue, Z.; Wang, Q.J.; Komatsu, M. Neuronal autophagy: Going the distance to the axon. Autophagy 2008, 4, 94–96.
[55]
Katsumata, K.; Nishiyama, J.; Inoue, T.; Mizushima, N.; Takeda, J.; Yuzaki, M. Dynein- and activity-dependent retrograde transport of autophagosomes in neuronal axons. Autophagy 2010, 6, 378–385.
[56]
Sasaki, S. Autophagy in spinal cord motor neurons in sporadic amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol 2011, 70, 349–359.
[57]
Rosen, D.R.; Siddique, T.; Patterson, D.; Figlewicz, D.A.; Sapp, P.; Hentati, A.; Donaldson, D.; Goto, J.; O’Regan, J.P.; Deng, H.X.; et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993, 362, 59–62.
[58]
Otomo, A.; Hadano, S.; Okada, T.; Mizumura, H.; Kunita, R.; Nishijima, H.; Showguchi-Miyata, J.; Yanagisawa, Y.; Kohiki, E.; Suga, E.; et al. Als2, a novel guanine nucleotide exchange factor for the small gtpase rab5, is implicated in endosomal dynamics. Hum. Mol. Genet 2003, 12, 1671–1687.
[59]
Nishimura, A.L.; Mitne-Neto, M.; Silva, H.C.; Richieri-Costa, A.; Middleton, S.; Cascio, D.; Kok, F.; Oliveira, J.R.; Gillingwater, T.; Webb, J.; et al. A mutation in the vesicle-trafficking protein vapb causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am. J. Hum. Genet 2004, 75, 822–831.
[60]
Parkinson, N.; Ince, P.G.; Smith, M.O.; Highley, R.; Skibinski, G.; Andersen, P.M.; Morrison, K.E.; Pall, H.S.; Hardiman, O.; Collinge, J.; et al. Als phenotypes with mutations in chmp2b (charged multivesicular body protein 2b). Neurology 2006, 67, 1074–1077.
[61]
Cox, L.E.; Ferraiuolo, L.; Goodall, E.F.; Heath, P.R.; Higginbottom, A.; Mortiboys, H.; Hollinger, H.C.; Hartley, J.A.; Brockington, A.; Burness, C.E.; et al. Mutations in chmp2b in lower motor neuron predominant amyotrophic lateral sclerosis (als). PLoS One 2010, 5, doi:10.1371/journal.pone.0009872.
[62]
Katsuno, M.; Adachi, H.; Minamiyama, M.; Waza, M.; Tokui, K.; Banno, H.; Suzuki, K.; Onoda, Y.; Tanaka, F.; Doyu, M.; et al. Reversible disruption of dynactin-1-mediated retrograde axonal transport in polyglutamine-induced motor neuron degeneration. J. Neurosci 2006, 26, 12106–12117.
[63]
Sobue, G.; Hashizume, Y.; Mukai, E.; Hirayama, M.; Mitsuma, T.; Takahashi, A. X-linked recessive bulbospinal neuronopathy. A clinicopathological study. Brain 1989, 112, 209–232.
[64]
Zhao, X.; Alvarado, D.; Rainier, S.; Lemons, R.; Hedera, P.; Weber, C.H.; Tukel, T.; Apak, M.; Heiman-Patterson, T.; Ming, L.; et al. Mutations in a newly identified gtpase gene cause autosomal dominant hereditary spastic paraplegia. Nat. Genet 2001, 29, 326–331.
[65]
Rismanchi, N.; Soderblom, C.; Stadler, J.; Zhu, P.P.; Blackstone, C. Atlastin GTPases are required for Golgi apparatus and ER morphogenesis. Hum. Mol. Genet 2008, 17, 1591–1604.
[66]
Hazan, J.; Fonknechten, N.; Mavel, D.; Paternotte, C.; Samson, D.; Artiguenave, F.; Davoine, C.S.; Cruaud, C.; Durr, A.; Wincker, P.; et al. Spastin, a new aaa protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nat. Genet 1999, 23, 296–303.
[67]
Rowland, L.P.; Shneider, N.A. Amyotrophic lateral sclerosis. N. Engl. J. Med 2001, 344, 1688–1700.
[68]
Ince, P.G.; Highley, J.R.; Kirby, J.; Wharton, S.B.; Takahashi, H.; Strong, M.J.; Shaw, P.J. Molecular pathology and genetic advances in amyotrophic lateral sclerosis: an emerging molecular pathway and the significance of glial pathology. Acta Neuropathol 2011, 122, 657–671.
Sasaki, S.; Warita, H.; Abe, K.; Iwata, M. Impairment of axonal transport in the axon hillock and the initial segment of anterior horn neurons in transgenic mice with a G93A mutant SOD1 gene. Acta Neuropathol 2005, 110, 48–56.
[71]
Jiang, Y.M.; Yamamoto, M.; Kobayashi, Y.; Yoshihara, T.; Liang, Y.; Terao, S.; Takeuchi, H.; Ishigaki, S.; Katsuno, M.; Adachi, H.; et al. Gene expression profile of spinal motor neurons in sporadic amyotrophic lateral sclerosis. Ann. Neurol 2005, 57, 236–251.
[72]
Jiang, Y.M.; Yamamoto, M.; Tanaka, F.; Ishigaki, S.; Katsuno, M.; Adachi, H.; Niwa, J.; Doyu, M.; Yoshida, M.; Hashizume, Y.; et al. Gene expressions specifically detected in motor neurons (dynactin-1, early growth response 3, acetyl-coa transporter, death receptor 5, and cyclin c) differentially correlate to pathologic markers in sporadic amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol 2007, 66, 617–627.
[73]
Kennedy, W.R.; Alter, M.; Sung, J.H. Progressive proximal spinal and bulbar muscular atrophy of late onset. A sex-linked recessive trait. Neurology 1968, 18, 671–680.
[74]
La Spada, A.R.; Wilson, E.M.; Lubahn, D.B.; Harding, A.E.; Fischbeck, K.H. Androgen receptor gene mutations in x-linked spinal and bulbar muscular atrophy. Nature 1991, 352, 77–79.
[75]
Gatchel, J.R.; Zoghbi, H.Y. Diseases of unstable repeat expansion: Mechanisms and common principles. Nat. Rev. Genet 2005, 6, 743–755.