全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

In Vitro Antioxidant, Anticoagulant and Antimicrobial Activity and in Inhibition of Cancer Cell Proliferation by Xylan Extracted from Corn Cobs

DOI: 10.3390/ijms13010409

Keywords: corn cob food, antimicrobial, heteroxylan, antioxidant polysaccharide, HeLa cells, 3T3 cells

Full-Text   Cite this paper   Add to My Lib

Abstract:

Xylan is one of most abundant polymer after cellulose. However, its potential has yet to be completely recognized. Corn cobs contain a considerable reservoir of xylan. The aim of this work was to study some of the biological activities of xylan obtained from corn cobs after alkaline extraction enhanced by ultrasonication. Physical chemistry and infrared analyses showed 130 kDa heteroxylan containing mainly xylose:arabinose: galactose:glucose (5.0:1.5:2.0:1.2). Xylan obtained exhibited total antioxidant activity corresponding to 48.5 mg of ascorbic acid equivalent/g of xylan. Furthermore, xylan displayed high ferric chelating activity (70%) at 2 mg/mL. Xylan also showed anticoagulant activity in aPTT test. In antimicrobial assay, the polysaccharide significantly inhibited bacterial growth of Klebsiella pneumoniae. In a test with normal and tumor human cells, after 72 h, only HeLa tumor cell proliferation was inhibited ( p < 0.05) in a dose-dependent manner by xylan, reaching saturation at around 2 mg/mL, whereas 3T3 normal cell proliferation was not affected. The results suggest that it has potential clinical applications as antioxidant, anticoagulant, antimicrobial and antiproliferative compounds.

References

[1]  Winterbourn, C.C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol 2008, 4, 278–286.
[2]  Koppula, S.B.; Ammani, K. Antioxidant findings of araku environment medicinal plants using different assays. Drug Invent. Today 2011, 3, 203–205.
[3]  Soory, M. Relevance of nutritional antioxidants in metabolic syndrome, ageing and cancer: Potential for therapeutic targeting. Infect. Disord. Drug Targets 2009, 9, 400–414.
[4]  Balsano, C.; Alisi, A. Antioxidant effects of natural bioactive compounds. Curr. Pharm. Des 2009, 15, 3063–3073.
[5]  Sun, J.; Chu, Y.F.; Wu, X.; Liu, R.H. Antioxidant and antiproliferative activities of common fruits. J. Agric. Food Chem 2002, 50, 7449–7454.
[6]  Camara, R.B.; Costa, L.S.; Fidelis, G.P.; Nobre, L.T.; Dantas-Santos, N.; Cordeiro, S.L.; Costa, M.S.; Alves, L.G.; Rocha, H.A. Heterofucans from the brown seaweed Canistrocarpus cervicornis with anticoagulant and antioxidant activities. Mar. Drugs 2011, 9, 124–138.
[7]  de Sousa, A.P.A.; Torres, M.R.; Pessoa, C.; de Moraes, M.O.; Filho, F.D.R.; Alves, A.P.N.N. In vivo growth-inhibition of Sarcoma 180 tumor by alginates from brown seaweed Sargassum vulgare. Carbohydr. Polym 2007, 69, 7–13.
[8]  Costa, L.S.; Fidelis, G.P.; Cordeiro, S.L.; Oliveira, R.M.; Sabry, D.A.; Camara, R.B.; Nobre, L.T.; Costa, M.S.; Almeida-Lima, J.; Farias, E.H.; et al. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomed. Pharmacother 2010, 64, 21–28.
[9]  da Silva, T.D.; Giordani, R.B.; Zimmer, K.R.; da Silva, A.G.; da Silva, M.V.; Correia, M.T.; Baumvol, I.J.R.; Macedo, A.J. Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles. J. Ethnopharmacol 2011, 137, 327–335.
[10]  Mehrotra, V.; Mehrotra, S.; Kirar, V.; Shyam, R.; Misra, K.; Srivastava, A.K.; Nandi, S.P. Antioxidant and antimicrobial activities of aqueous extract of Withania somnifera against methicillin-resistant Staphylococcus aureus. J. Microbiol. Biotechnol. Res 2011, 1, 40–45.
[11]  Ebringerová, A.; Kardosová, A.; Hromádková, Z.; Malovíková, A.; Hríbalova, V. Immunomodulatory activity of acidic xylans in relation to their structural and molecular properties. Int. J. Biol. Macromol 2002, 30, 1–6.
[12]  Anwar, F.; Jami, A.; Iqbal, S.; Sheikh, M.A. Antioxidant activity of various plant extracts under ambient and accelerated storage of sunflower oil. Grasas y Aceites 2006, 57, 189–197.
[13]  Garcia, R.B.; Ganterb, J.L.M.S.; Carvalho, R.R. Solution properties of d-xylans from corn cobs. Eur. Polym. J 2000, 36, 783–787.
[14]  Wang, Y.; Zhang, J. A novel hybrid process, enhanced by ultrasonication, for xylan extraction from corncobs and hydrolysis of xylan to xylose by xylanase. J. Food Eng 2006, 77, 140–145.
[15]  Hromadková, Z.; Kovaciková, J.; Ebringerová, A. Study of the classical and ultrasound-assisted extraction of the corn cob xylan. Ind. Crops Prod 1999, 9, 101–109.
[16]  Ebringerová, A.; Hromadková, Z.; Alfoldi, J.; Berth, G. Structural and solution properties of corn cob heteroxylans. Carbohydr. Polym 1992, 19, 99–105.
[17]  Ebringerova, A.; Hromadkova, Z.; Alfoldi, J.; Hribalova, V. The immunologically active xylan from ultrasound-treated corn cobs: Extractability, structure and properties. Carbohydr. Polym 1998, 37, 231–239.
[18]  Ebringerová, A.; Hromádková, Z. The effect of ultrasound on the structure and properties of the watersoluble corn hull heteroxylan. Ultrason. Sonochem 1997, 4, 305–309.
[19]  Garcia, R.B.; Nagashima, T., Jr; Praxedes, A.K.C.; Raffin, F.N.; Moura, T.F.A.L.; do Egito, E.S.T. Preparation of micro and nanoparticles from corn cobs xylan. Polym. Bull. 2001, 46, 371–379.
[20]  Barroso, E.M.A.; Costa, L.S.; Medeiros, V.P.; Cordeiro, L.S.; Costa, M.S.S.P.; Franco, C.R.C.; Nader, H.B.; Leite, E.L.; Rocha, H.A.O. A non-anticoagulant heterofucan has antithrombotic activity in vivo. Planta Med 2008, 74, 712–718.
[21]  Kacuráková, M.; Wellner, N.; Ebringerová, A.; Hromádková, Z.; Wilson, R.H.; Belton, P.S. Characterisation of xylan-type polysaccharides and associated cell wall components by FT-IR and FT-Raman spectroscopies. Food Hydrocoll 1999, 13, 35–41.
[22]  Oliveira, E.E.; Silva, A.E.; Nagashima, T.; Gomes, M.C.S.; Aguiar, L.M.; Marcelino, H.R.; Araujo, I.B.; Bayer, M.P.; Ricardo, N.M.P.S.; Oliveira, A.G.; et al. Xylan from corn cobs, a promising polymer for drug delivery production and characterization. Bioresour. Technol 2010, 101, 5402–5406.
[23]  Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem 1999, 269, 337–341.
[24]  Choi, J.-I.; Kim, J.-K.; Srinivasan, P.; Kim, J.-H.; Park, H.-J.; Byun, M.-W.; Lee, J.-W. Comparison of gamma ray and electron beam irradiation on extraction yield, morphological and antioxidant properties of polysaccharides from tamarind seed. Radiat. Phys. Chem 2009, 78, 605–609.
[25]  Singh, S.; Singh, R.P. In Vitro methods of assay of antioxidants: An overview. Food Rev. Int 2008, 24, 392–415.
[26]  Cao, Y.; Ikeda, I. Antioxidant activity and antitumor activity (in vitro) of xyloglucan selenious ester and surfated xyloglucan. Int. J. Biol. Macromol 2009, 45, 231–235.
[27]  Wang, J.; Zhang, Q.; Zhang, Z.; Li, Z. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. Int. J. Biol. Macromol 2008, 42, 127–132.
[28]  Qi, H.; Zhao, T.; Zhang, Q.; Li, Z.; Zhao, Z.; Xing, R. Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). J. Appl. Phycol 2005, 17, 527–534.
[29]  Zhou, Y.C.; Zheng, R.L. Phenolic compounds and an analog as superoxide anion scavengers and anti oxidants. Biochem. Pharmacol 1991, 42, 1177–1179.
[30]  Liu, W.; Wang, H.; Yao, W.; Gao, X.; Yu, L. Effects of sulfation on the physicochemical and functional properties of a water insoluble polysaccharide preparation fromGanoderma lucidum. J. Agric. Food Chem 2010, 58, 3336–3334.
[31]  Changa, S.C.; Hsua, B.Y.; Chen, B.H. Structural characterization of polysaccharides from Zizyphus jujube and evaluation of antioxidant activity. Int. J. Biol. Macromol 2010, 47, 445–453.
[32]  Telles, C.B.S.; Sabry, D.A.; Almeida-Lima, J.; Costa, M.S.S.P.; Melo-Silveira, R.F.; Trindade, E.S.; Sassaki, G.L.; Wisbeck, E.; Furlan, S.A.; Leite, E.L.; et al. Sulfation of the extracellular polysaccharide produced by the edible mushroom Pleurotus sajor caju alters its antioxidant, anticoagulant and antiproliferative properties in vitro. Carbohydr. Pol 2011, 85, 514–521.
[33]  Yang, X.B.; Gao, X.D.; Han, F.; Tan, R.X. Sulfation of a polysaccharide produced by marine filamentous fungus Phoma herbarum YS4108 alters its antioxidant properties in vitro. Biochim. Biophys. Acta 2005, 1725, 120–127.
[34]  Ryu, D.S.; Kim, S.H.; Lee, D.S. Anti-proliferative effect of polysaccharides from Salicornia herbacea on induction of G2/M arrest and apoptosis in human colon cancer cells. J. Microbiol. Biotechnol 2009, 19, 1482–1489.
[35]  Ando, H.; Ohba, H.; Sakak, I.T.; Takamine, K.; Kamino, Y.; Moriwaki, S.; Bakalova, R.; Uemura, Y.; Hatate, Y. Hot-compressed-water decomposed products from bamboo manifest a selective cytotoxicity against acute lymphoblastic leukemia cells. Toxicol. in Vitro 2004, 18, 765–771.
[36]  Meyers, K.J.; Watkins, C.B.; Pritts, M.P.; Rui, H.L. Antioxidant and antiproliferative activities of strawberries. J. Agric. Food Chem 2003, 51, 6887–6892.
[37]  Yoon, S.; Pereira, M.S.; Pavao, M.S.G.; Hwang, J.; Pyun, Y.; Mourao, P.A.S. The medicinal plant Porana volubilis contains polysaccharides with anticoagulant activity mediated by heparin cofactor II. Thromb. Res 2002, 106, 51–58.
[38]  Lee, C.K.; Kin, H.; Moon, K.H.; Shun, K.H. Screening and isolation of antibiotic resistance inhibitors from herb materials resistance inhibition of volatile components of Korean aromatic herbs. Arch. Pharm. Res 1998, 21, 62–66.
[39]  Gul, M.Z.; Bhakshu, L.M.; Ahmad, F.; Kondapi, A.K.; Qureshi, I.A.; Ghazi, I.A. Evaluation of Abelmoschus moschatus extracts for antioxidant, free radical scavenging, antimicrobial and antiproliferative activities using in vitro assays. BMC Complement. Altern. Med 2011, 11, 64.
[40]  Almeida-Lima, J.; Costa, L.S.; Silva, N.B.; Melo-Silveira, R.F.; Silva, F.V.; Felipe, M.B.; Medeiros, S.R.; Leite, E.L.; Rocha, H.A. Evaluating the possible genotoxic, mutagenic and tumor cell proliferation-inhibition effects of a non-anticoagulant, but antithrombotic algal heterofucan. J. Appl. Toxicol 2010, 7, 708–715.
[41]  Rocha, H.A.; Bezerra, L.C.; de Albuquerque, I.R.; Costa, L.S.; Guerra, C.M.; de Abreu, L.D.; Nader, H.B.; Leite, E.L. A xylogalactofucan from the brown seaweed Spatoglossum schr?ederi stimulates the synthesis of an antithrombotic heparan sulfate from endothelial cells. Planta Med 2005, 71, 379–381.
[42]  Magalhaes, K.D.; Costa, L.S.; Fidelis, G.P.; Oliveira, R.M.; Nobre, L.T.D.B.; Dantas-Santos, N.; Camara, R.B.G.; Albuquerque, I.R.L.; Cordeiro, S.L.; Sabry, D.A.; et al. Anticoagulant, antioxidant and antitumor activities of heterofucans from the seaweed Dictyopeteris delicatula. Int. J. Mol. Sci 2011, 12, 3352–3365.
[43]  Dische, Z. A new specific color reactions of hexuronic acids. J. Biol. Chem 1974, 167, 189–198.
[44]  Antunes, A.L.; Trentin, D.S.; Bonfanti, J.W.; Pinto, C.C.; Perez, L.R.; Macedo, A.J.; Barth, A.L. Application of a feasible method for determination of biofilm antimicrobial susceptibility in staphylococci. APMIS 2010, 118, 873–877.
[45]  Antunes, A.L.; Bonfanti, J.W.; Perez, L.R.; Pinto, C.C.; Freitas, A.L.; Macedo, A.J.; Barth, A.L. High vancomycin resistance among biofilms produced by Staphylococcus species isolated from central venous catheters. Mem. Inst. Oswaldo Cruz 2011, 106, 51–55.
[46]  Gupta, N.; Limbago, B.M.; Patel, J.B.; Kallen, A.J. Carbapenem-resistant enterobacteriaceae: Epidemiology and prevention. Clin. Infect. Dis 2011, 53, 60–67.
[47]  Baumvol, I.J.; Macedo, A.J. Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles. J. Ethnopharmacol 2011, 137, 327–335.
[48]  , version 2.01; Jandel Scientific Software: San Rafael, CA, USA, 1997.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133