全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

High Resolution Global Modeling of the Atmospheric Circulation

Keywords: general circulation model,mesoscale simulation,gravity waves,atmospheric tides
全球气候模型
,大气环流,数值模拟,中尺度现象,热带气象

Full-Text   Cite this paper   Add to My Lib

Abstract:

An informal review is presented of recent developments in numerical simulation of the global atmospheric circulation with very fine numerical resolution models. The focus is on results obtained recently with versions of the GFDL SKYHI model and the Atmospheric Model for the Earth Simulator (AFES) global atmospheric models. These models have been run with effective horizontal grid resolution of -10-40 km and fine vertical resolution. The results presented demonstrate the utility of such models for the study of a diverse range of phenomena. Specifically the models are shown to simulate the development of tropical cyclones with peak winds and minimum central pressures comparable to those of the most intense hurricanes actually observed. More fundamentally, the spectrum of energy content in the mesoscale in the flow can be reproduced by these models down to near the smallest explicitly-resolved horizontal scales. In the middle atmosphere it is shown that increasing horizontal resolution can lead to significantly improved overall simulation of the global-scale circulation. The application of the models to two specific problems requiring very fine resolution global will be discussed. The spatial and temporal variability of the vertical eddy flux of zonal momentum associated with gravity waves near the tropopause is evaluated in the very fine resolution AFES model. This is a subject of great importance for understanding and modelling the flow in the middle atmosphere. Then the simulation of the small scale variations of the semidiurnal surface pressure oscillation is analyzed, and the signature of significant topographic modulation of the semidiurnal atmospheric tide is identified.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133