全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Lysophosphatidic Acid Level and the Incidence of Silent Brain Infarction in Patients with Nonvalvular Atrial Fibrillation

DOI: 10.3390/ijms11103988

Keywords: atrial fibrillation, lysophospholipids, ischemic stroke, platelet activation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lysophosphatidic acid (LPA), which is proposed to play an important role in normal physiological situations such as wound healing, vascular tone, vascular integrity and reproduction, may be involved in the etiology of some diseases such as atherosclerosis, cancer, obesity or myocardial infarction. Abnormal findings, including silent brain infarction (SBI), are frequently observed by magnetic resonance imaging (MRI) in patients with nonvalvular atrial fibrillation (NVAF). However, whether there is a relationship between LPA level and the prevalence of SBI has not been extensively studied. In the present study, the association between them was investigated. 235 patients with NVAF, 116 cases of SBI without NVAF and 120 cases of healthy volunteers (control group), who did not receive any antithrombotic therapy, were enrolled in this study. Plasma LPA levels in the NVAF with SBI group were significantly higher than that in the control group ( p < 0.01), NVAF without SBI group ( p < 0.01) and SBI without NVAF group ( p < 0.01). The LPA levels are lower in the control group than in the NVAF without SBI and SBI without NVAF groups ( p < 0.01), however, the latter two groups did not significantly differ from each other for LPA levels ( p > 0.05) There were significant differences in the positive rate of platelet activation between each of the groups ( p < 0.01). The positive rate of platelet activation was significantly higher in the NVAF with SBI group. We suggest that LPA might be a novel marker for estimation of the status of platelet activation and the risk factor for SBI onset in NVAF patients. We expected that plasma LPA levels could predict the occurrence of SBI in NVAF patients.

References

[1]  Kopecky, SL; Gersh, BJ; McGoon, MD; Whisnant, JP; Holmes, DR, Jr; Ilstrup, DM; Frye, RL. The natural history of lone atrial fibrillation: a population-based study over three decades. N. Engl. J. Med?1987, 7, 669–674.
[2]  Ma, CS; Du, X; Jiang, CX. Atrial fibrillation in China: a brief review. Chin. Med. J. (Engl.)?2009, 122, 2803–2806.
[3]  Hart, RG; Pearce, LA. Current status of stroke risk stratification in patients with atrial fibrillation. Stroke?2009, 40, 2607–2610, doi:10.1161/STROKEAHA.109.549428. 19461020
[4]  Ahmad, O; Ahmad, KE; Dear, KB; Harvey, I; Hughes, A; Lueck, CJ. Atrial fibrillation and anticoagulation in a stroke unit population. Intern. Med. J?2009, 39, 752–756, doi:10.1111/j.1445-5994.2008.01878.x. 19912401
[5]  Kamath, S; Blann, AD; Lip, GY. Platelets and atrial fibrillation. Eur. Heart J?2001, 22, 2233–2242, doi:10.1053/euhj.2001.2612. 11728143
[6]  Pamuklar, Z; Federico, L; Liu, S; Umezu-Goto, M; Dong, A; Panchatcharam, M; Fulerson, Z; Berdyshev, E; Natarajan, V; Fang, X; van Meeteren, LA; Moolenaar, WH; Mills, GB; Morris, AJ; Smyth, SS. Autotaxin/Lysopholipase D and Lysophosphatidic acid regulate murine hemostasis and thrombosis. J. Biol. Chem?2009, 284, 7385–7394. 19139100
[7]  Smyth, SS; Cheng, HY; Miriyala, S; Panchatcharam, M; Morris, AJ. Roles of lysophosphatidic acid in cardiovascular physiology and disease. Biochim. Biophys. Acta?2008, 1781, 563–570, doi:10.1016/j.bbalip.2008.05.008. 18586114
[8]  Eichholtz, T; Jalink, K; Fahrenfort, I; Moolenaar, WH. The bioactive phospholipid lysophosphatidic acid is released from activated platelets. Biochem. J?1993, 291, 677–680. 8489494
[9]  Rother, E; Brandl, R; Baker, DL; Goyal, P; Gebhard, H; Tigyi, G; Siess, W. Subtype-selective antagonists of lysophosphatidic acid receptors inhibit platelet activation triggered by the lipid core of atherosclerotic plaques. Circulation?2003, 108, 741–747, doi:10.1161/01.CIR.0000083715.37658.C4. 12885756
[10]  Siess, W; Zangl, KJ; Essler, M; Bauer, M; Brandl, R; Corrinth, C; Bittman, R; Tigyi, G; Aepfelbacher, M. Lysophosphatidic acid mediates the rapid activation of platelets and endothelial cells by mildly oxidized low density lipoprotein and accumulates in human atherosclerotic lesions. Proc. Natl. Acad. Sci. USA?1999, 96, 6931–6936, doi:10.1073/pnas.96.12.6931. 10359816
[11]  Aoki, J; Taira, A; Takanezawa, Y; Kishi, Y; Hama, K; Kishimoto, T; Mizuno, K; Saku, K; Taguchi, R; Arai, H. Serum lysophosphatidic acid is produced through diverse phospholipase pathways. J. Biol. Chem?2002, 277, 48737–48744, doi:10.1074/jbc.M206812200. 12354767
[12]  Boucharaba, A; Serre, CM; Gres, S; Saulnier-Blache, JS; Bordet, JC; Guglielmi, J; Clezardin, P; Peyruchaud, O. Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J. Clin. Invest?2004, 114, 1714–1725. 15599396
[13]  Vermeer, SE; Longstreth, WT, Jr; Koudstaal, PJ. Silent brain infarcts: a systematic review. Lancet Neurol?2007, 6, 611–619, doi:10.1016/S1474-4422(07)70170-9. 17582361
[14]  Matsui, T; Arai, H; Yuzuriha, T; Yao, H; Miura, M; Hashimoto, S; Higuchi, S; Matsushita, S; Morikawa, M; Kato, A; Sasaki, H. Elevated plasma homocysteine levels and risk of silent brain infarction in elderly people. Stroke?2001, 32, 1116–1119, doi:10.1161/01.STR.32.5.1116. 11340219
[15]  Uehara, T; Tabuchi, M; Mori, E. Risk factors for silent cerebral infarsts in subcortical white matter and basal ganglia. Stroke?1999, 30, 378–382, doi:10.1161/01.STR.30.2.378. 9933274
[16]  Lee, SC; Park, SJ; Ki, HK; Gwon, HC; Chung, CS; Byun, HS; Shin, KJ; Shin, MH; Lee, WR. Prevalence and risk factors of silent cerebral infarction in apparently normal adults. Hypertension?2000, 36, 73–77, doi:10.1161/01.HYP.36.1.73-a. 10904015
[17]  Adachi, T; Kobayashi, S; Yamaguchi, S; Okada, K. MRI findings of small subcortical ‘lacunar-like’. infarction resulting from large vessel disease. J. Neurol?2000, 247, 280–285, doi:10.1007/s004150050584. 10836620
[18]  Narumiya, T; Sakamaki, T; Sato, Y; Kanmatsuse, K. Relationship between left atrial appendage function and left atrial thrombus in patients with nonvalvular chronic atrial fibrillation and atrial flutter. Circ. J?2003, 67, 68–72, doi:10.1253/circj.67.68. 12520155
[19]  Kobayasi, S; Okada, K; Koide, H; Bokua, H; Yamaguti, S. Subcortical silent brain infarction as a risk factor for clinical stroke. Stroke?1997, 28, 1932–1939, doi:10.1161/01.STR.28.10.1932. 9341698
[20]  Coull, BM; Malinow, MR; Beamer, N; Sexton, G; Nordt, F; de Garmo, P. Elevated plasma homocyst(e)ine concentration as a possible independent risk factor for stroke. Stroke?1990, 21, 572–576, doi:10.1161/01.STR.21.4.572. 2326839
[21]  Giles, WH; Croft, JB; Greenlund, KJ; Ford, ES; Kittner, SJ. Total homocysteine concentration and the likelihood of nonfatal stroke: Results from the Third National Health and Nutrition Examination Survey, 1988–1994. Stroke?1998, 29, 2473–2477, doi:10.1161/01.STR.29.12.2473. 9836753
[22]  Boushey, CJ; Beresford, SA; Omenn, GS; Motulsky, AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA?1995, 274, 1049–1057, doi:10.1001/jama.1995.03530130055028. 7563456
[23]  Moller, J; Nielsen, GM; Tvedegaard, KC; Andersen, NT; Jorgensen, PE. A meta analysis of cerebrovascular disease and hyperhomocystinemia. Scand. J. Clin. Lab. Invest?2000, 60, 491–499, doi:10.1080/003655100448473. 11129065
[24]  Hankey, GJ; Eikelboom, JW. Homocysteine and stroke. Curr. Opin. Neurol?2001, 14, 95–102, doi:10.1097/00019052-200102000-00015. 11176224
[25]  Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA?2002, 288, 2015–2022, doi:10.1001/jama.288.16.2015. 12387654
[26]  Wald, DS; Law, M; Morris, JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ?2002, 325, 1202–1206, doi:10.1136/bmj.325.7374.1202. 12446535
[27]  Anan, F; Takahashi, N; Shimomura, T; Imagawa, M; Yufu, K; Nawata, T; Nakagawa, M; Yonemochi, H; Eshima, N; Saikawa, T; Yoshimatsu, H. Hyperhomocysteinemia is a significant risk factor for silent cerebral infarction in patients with chronic renal failure undergoing hemodialysis. Metabolism?2006, 55, 656–661, doi:10.1016/j.metabol.2005.12.007. 16631443
[28]  Kamath, S; Blann, AD; Chin, BS; Lanza, F; Aleil, B; Cazenave, JP; Lip, GY. A study of platelet activation in atrial fibrillation and the effects of antithrombotic therapy. Eur. Heart J?2002, 23, 1788–1795, doi:10.1053/euhj.2002.3259. 12419299
[29]  Shinkawa, A; Ueda, K; Kiyohara, Y; Kato, I; Sueishi, K; Tsuneyoshi, M; Fujishima, M. Silent cerebral infarction in a community-based autopsy series in Japan. The Hisayama Study. Stroke?1995, 26, 380–385, doi:10.1161/01.STR.26.3.380. 7886710
[30]  Price, TR; Manolio, TA; Kronmal, RA; Kittner, SJ; Yue, NC; Robbins, J; Anton-Culver, H; Oleary, DH. Silent brain infarction on magnetic resonance imaging and neurological abnormalities in community dwelling older adults: the Cardiovascular Health Study. CHS collaborative research group. Stroke?1997, 28, 1158–1164, doi:10.1161/01.STR.28.6.1158. 9183343
[31]  Gartner, W; Zierhut, B; Mineva, I; Sodeck, G; Leutmezer, F; Domanovits, H; Prayer, D; Wolf, F; Base, W; Weissel, M; Wagner, L. Brain natriuretic peptide correlates with the extent of atrial fibrillation-associated silent brain lesions. Clin. Biochem?2008, 41, 1434–1439, doi:10.1016/j.clinbiochem.2008.09.096. 18823968
[32]  Minamino, T; Kitakaze, M; Sato, H; Asanuma, H; Funaya, H; Koretsune, Y; Hori, M. Plasma levels of nitrite/nitrate and platelet cGMP levels are decreased in patients with atrial fibrillation. Arterioscler. Thromb. Vasc. Biol?1997, 17, 3191–3195, doi:10.1161/01.ATV.17.11.3191. 9409310
[33]  Minamino, T; Kitakaze, M; Sanada, S; Asanuama, H; Kurotobi, T; Koretsune, Y; Fukunami, M; Kuzuya, T; Hoki, N; Hori, M. Increased expression of P-selectin on platelets is a risk factor for silent cerebral infarction in patients with atrial fibrillation: role of nitric oxide. Circulation?1998, 98, 1721–1727, doi:10.1161/01.CIR.98.17.1721. 9788825
[34]  Noris, M; Morigi, M; Donadelli, R; Aiello, S; Foppolo, M; Todeschini, M; Orisio, S; Remuzzi, G; Remuzzi, A. Nitric oxide synthesis by cultured endothelial cell is modulated by flow condition. Circ. Res?1995, 76, 536–543, doi:10.1161/01.RES.76.4.536. 7534657
[35]  Topper, J; Cai, J; Falb, D; Gimborne, M. Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc. Natl. Acad. Sci. USA?1996, 93, 10417–10422, doi:10.1073/pnas.93.19.10417. 8816815
[36]  Uehara, T; Tabuchi, M; Mori, E. Risk factors for silent cerebral infarsts in subcortical white matter and basal ganglia. Stroke?1999, 30, 378–382, doi:10.1161/01.STR.30.2.378. 9933274
[37]  Lindgren, A; Roijer, A; Rudling, O; Norrving, B; Larsson, EM; Eskilsson, J; Wallin, L; Olsson, B; Johansson, BB. Cerebral lesions on magnetic resonance imaging, heart disease, vascular risk factors in subjects without stroke: a population-based study. Stroke?1994, 25, 929–934, doi:10.1161/01.STR.25.5.929. 8165686
[38]  Ylikoski, A; Erkinjuntti, T; Raininko, R; Sarna, S; Sulkava, R; Tilvis, R. White matter hyperintensities on MRI in the neurologically nondiseased elderly. Analysis of cohorts of consecutive subjects aged 55 to 85 years living at home. Stroke?1995, 26, 1171–1177, doi:10.1161/01.STR.26.7.1171. 7604409
[39]  Longstreth, WT, Jr; Manolio, TA; Arnold, A; Burke, GL; Bryan, N; Jungreis, CA; Enright, PL; OLeary, D; Fried, L. Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people: the cardiovascular health study. Stroke?1996, 27, 1274–1282, doi:10.1161/01.STR.27.8.1274. 8711786
[40]  Hoshi, T; Kitagawa, K; Yamagami, H; Furukado, S; Hougaku, H; Hori, M. Relations of serum high-sensitivity C-reactive protein and interleukin-6 levels with silent brain infarction. Stroke?2005, 36, 768–772, doi:10.1161/01.STR.0000158915.28329.51. 15746456
[41]  Baker, DL; Desiderio, DM; Miller, DD; Tolley, B; Tigyi, GJ. Direct quantitative analysis of lysophosphatidic acid molecular species by stable isotope dilution electrospray ionization liquid chromatography-mass spectrometry. Anal. Biochem?2001, 292, 287–295, doi:10.1006/abio.2001.5063. 11355863
[42]  Li, ZG; Yu, ZC; Wang, DZ; Ju, WP; Zhan, X; Wu, QZ; Wu, XJ; Cong, HM; Man, HH. Influence of acetylsalicylate on plasma lysophosphatidic acid level in patients with ischemic cerebral vascular diseases. Neurol. Res?2008, 30, 366–369, doi:10.1179/174313208X300369. 18544253

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133