Rhamnolipids are known as very efficient biosurfactant molecules. They are used in a wide range of industrial applications including food, cosmetics, pharmaceutical formulations and bioremediation of pollutants. The present review provides an overview of the effect of rhamnolipids in animal and plant defense responses. We describe the current knowledge on the stimulation of plant and animal immunity by these molecules, as well as on their direct antimicrobial properties. Given their ecological acceptance owing to their low toxicity and biodegradability, rhamnolipids have the potential to be useful molecules in medicine and to be part of alternative strategies in order to reduce or replace pesticides in agriculture.
References
[1]
Abdel-Mawgoud, AM; Lepine, F; Deziel, E. Rhamnolipids: Diversity of structures, microbial origins and roles. Appl. Microbiol. Biotechnol?2010, 86, 1323–1336, doi:10.1007/s00253-010-2498-2. 20336292
[2]
Soberon-Chavez, G; Lépine, F; Déziel, E. Production of rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol?2005, 68, 718–725, doi:10.1007/s00253-005-0150-3. 16160828
Kosaric, N. Biosurfactants and their application for soil bioremediation. Food Technol. Biotechnol?2001, 39, 295–304.
[5]
Nitschke, M; Costa, SG; Contiero, J. Rhamnolipid surfactants: An update on the general aspects of these remarkable biomolecules. Biotechnol. Prog?2005, 21, 1593–1600, doi:10.1021/bp050239p. 16321040
[6]
Pornsunthorntawee, O; Wongpanit, P; Rujiravanit, R. Rhamnolipid biosurfactants: Production and their potential in environmental biotechnology. Adv. Exp. Med. Biol?2010, 672, 211–221. 20545285
[7]
Maier, RM; Soberon-Chavez, G. Pseudomonas aeruginosa rhamnolipids: Biosynthesis and potential applications. Appl. Microbiol. Biotechnol?2000, 54, 625–633, doi:10.1007/s002530000443. 11131386
[8]
Arino, S; Marchal, R; Vandecasteele, JP. Involvement of a rhamnolipid-producing strain of Pseudomonas aeruginosa in the degradation of polycyclic aromatic hydrocarbons by a bacterial community. J. Appl. Microbiol?1998, 84, 769–776, doi:10.1046/j.1365-2672.1998.00412.x. 9674130
[9]
Benincasa, M; Abalos, A; Oliveira, I; Manresa, A. Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie Van Leeuwenhoek?2004, 85, 1–8, doi:10.1023/B:ANTO.0000020148.45523.41. 15028876
[10]
Haba, E; Pinazo, A; Jauregui, O; Espuny, MJ; Infante, MR; Manresa, A. Physiochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol. Bioeng?2003, 81, 316–322, doi:10.1002/bit.10474. 12474254
[11]
Lang, S; Katsiwela, E; Wagner, F. Antimicrobial effects of biosurfactants. Fat Sci Technol?1989, 91, 363–366.
[12]
Nitschke, M; Costa, SG; Contiero, J. Structure and applications of a rhamnolipid surfactant produced in soybean oil waste. Appl. Biochem. Biotechnol?2010, 160, 2066–2074, doi:10.1007/s12010-009-8707-8. 19649781
[13]
Vasileva-Tonkova, E; Sotirova, A; Galabova, D. The effect of rhamnolipid biosurfactant produced by Pseudomonas fluorescens on model bacterial strains and isolates from industrial wastewater. Curr Microbiol?2010, doi:10.1007/s00284-010-9725-z.
[14]
Al-Tahhan, RA; Sandrin, TR; Bodour, AA; Maier, RM. Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: Effect on cell surface properties and interaction with hydrophobic substrates. Appl. Environ. Microbiol?2000, 66, 3262–3268, doi:10.1128/AEM.66.8.3262-3268.2000. 10919779
[15]
Sotirova, A; Spasova, D; Vasileva-Tonkova, E; Galabova, D. Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. Microbiol. Res?2009, 164, 297–303, doi:10.1016/j.micres.2007.01.005. 17416508
[16]
De Jonghe, K; De Dobbelaere, I; Sarrazyn, R; H?fte, M. Control of Phytophthora cryptogea in the hydroponic forcing of witloof chicory with the rhamnolipid-based biosurfactant formulation PRO1. Plant Pathol?2005, 54, 219–226, doi:10.1111/j.1365-3059.2005.01140.x.
[17]
Kim, BS; Lee, JY; Hwang, BK. In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Manage. Sci?2000, 56, 1029–1035, doi:10.1002/1526-4998(200012)56:12<1029::AID-PS238>3.0.CO;2-Q.
[18]
Perneel, M; D’Hondt, L; De Maeyer, K; Adiobo, A; Rabaey, K; Hofte, M. Phenazines and biosurfactants interact in the biological control of soil-borne diseases caused by Pythium spp. Environ. Microbiol?2008, 10, 778–788, doi:10.1111/j.1462-2920.2007.01501.x. 18237310
[19]
Sharma, A; Jansen, R; Nimtz, M; Johri, BN; Wray, V. Rhamnolipids from the rhizosphere bacterium Pseudomonas sp. GRP(3) that reduces damping-off disease in Chilli and tomato nurseries. J. Nat. Prod?2007, 70, 941–947, doi:10.1021/np0700016. 17511504
[20]
Sotirova, AV; Spasova, DI; Galabova, DN; Karpenko, E; Shulga, A. Rhamnolipid-biosurfactant permeabilizing effects on gram-positive and gram-negative bacterial strains. Curr. Microbiol?2008, 56, 639–644, doi:10.1007/s00284-008-9139-3. 18330632
[21]
Stanghellini, ME; Miller, RM. Biosurfactants: Their identity and potential efficacy in the biological control of zoosporic plant pathogen. Plant Dis?1997, 81, 4–12, doi:10.1094/PDIS.1997.81.1.4.
[22]
Yoo, DS; Lee, BS; Kim, EK. Characteristics of microbial biosurfactant as an antifungal agent against plant pathogenic fungus. J. Microbiol. Biotechnol?2005, 15, 1164–1169.
Cosson, P; Zulianello, L; Join-Lambert, O; Faurisson, F; Gebbie, L; Benghezal, M; Van Delden, C; Curty, LK; Kohler, T. Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system. J. Bacteriol?2002, 184, 3027–3033, doi:10.1128/JB.184.11.3027-3033.2002. 12003944
[25]
Haferburg, D; Hommel, R; Kleber, H; Kluge, S; Schuster, G; Zschiegner, H. Antiphytovirale Aktivit?t von Rhamnolipid aus Pseudomonas aeruginosa. Acta Biotechnol?1987, 7, 353–356, doi:10.1002/abio.370070415.
[26]
Itoh, S; Honda, H; Tomita, F; Suzuki, T. Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin (mixture of C12, C13 and C14 fractions). J. Antibiot?1971, 24, 855–859, doi:10.7164/antibiotics.24.855. 4334639
[27]
Remichkova, M; Galabova, D; Roeva, I; Karpenko, E; Shulga, A; Galabov, AS. Anti-herpesvirus activities of Pseudomonas sp. S-17 rhamnolipid and its complex with alginate. Z. Naturforsch. Sect. C?2008, 63, 75–81.
[28]
Vasileva-Tonkova, E; Galabova, D; Karpenko, E; Shulga, A. Biosurfactant-rhamnolipid effects on yeast cells. Lett. Appl. Microbiol?2001, 33, 280–284, doi:10.1046/j.1472-765X.2001.00996.x. 11559401
[29]
Wang, X; Gong, L; Liang, S; Han, X; Zhu, C; Li, Y. Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa. Harmful Algae?2005, 4, 433–443, doi:10.1016/j.hal.2004.06.001.
[30]
De Lucca, A; Klich, M; Boue, S; Cleveland, T; Sien, T; Walsh, T. Fungicidal activity of plant saponin CAY-1 for fungi isolated from diseased Vitis fruit and stems. Am. J. Enol. Vitic?2008, 59, 67–72.
[31]
Takemoto, JY; Bensaci, M; De Lucca, AJ; Cleveland, TE; Gandhi, NR; Skebba, VP. Inhibition of fungi from diseased grapeby syringomycin E-rhamnolipid mixture. Am. J. Enol. Vitic?2010, 61, 120–124.
[32]
Boller, T; Felix, G. A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol?2009, 60, 379–406, doi:10.1146/annurev.arplant.57.032905.105346. 19400727
[33]
Boller, T; He, SY. Innate immunity in plants: An arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science?2009, 324, 742–744, doi:10.1126/science.1171647. 19423812
[34]
Mackey, D; McFall, AJ. MAMPs and MIMPs: Proposed classifications for inducers of innate immunity. Mol. Microbiol?2006, 61, 1365–1371, doi:10.1111/j.1365-2958.2006.05311.x. 16899081
[35]
Aliprantis, AO; Yang, RB; Mark, MR; Suggett, S; Devaux, B; Radolf, JD; Klimpel, GR; Godowski, P; Zychlinsky, A. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science?1999, 285, 736–739, doi:10.1126/science.285.5428.736. 10426996
Gerold, G; Ajaj, KA; Bienert, M; Laws, HJ; Zychlinsky, A; de Diego, JL. A Toll-like receptor 2-integrin beta3 complex senses bacterial lipopeptides via vitronectin. Nat. Immunol?2008, 9, 761–768, doi:10.1038/ni.1618. 18516040
[38]
Hauschildt, S; Hoffmann, P; Beuscher, HU; Dufhues, G; Heinrich, P; Wiesmüller, K-H; Jung, G; Bessler, WG. Activation of bone marrow-derived mouse macrophages by bacterial lipopeptide: Cytokine production, phagocytosis and Ia expression. Eur. J. Immunol?1990, 20, 63–68, doi:10.1002/eji.1830200110. 2407539
[39]
Takeuchi, O; Kaufmann, A; Grote, K; Kawai, T; Hoshino, K; Morr, M; Muhlradt, PF; Akira, S. Cutting edge: Preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a toll-like receptor 2- and MyD88-dependent signaling pathway. J. Immunol?2000, 164, 554–557. 10623793
[40]
Raaijmakers, JM; de Bruijn, I; Nybroe, O; Ongena, M. Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiol. Rev?2010, 34, 1037–1062. 20412310
[41]
Haussler, S; Rohde, M; von Neuhoff, N; Nimtz, M; Steinmetz, I. Structural and functional cellular changes induced by Burkholderia pseudomallei rhamnolipid. Infect. Immun?2003, 71, 2970–2975, doi:10.1128/IAI.71.5.2970-2975.2003. 12704181
[42]
McClure, CD; Schiller, NL. Effects of Pseudomonas aeruginosa rhamnolipids on human monocyte-derived macrophages. J. Leukocyte Biol?1992, 51, 97–102. 1431557
[43]
McClure, CD; Schiller, NL. Inhibition of macrophage phagocytosis by Pseudomonas aeruginosa rhamnolipids in vitro and in vivo. Curr. Microbiol?1996, 33, 109–117, doi:10.1007/s002849900084. 8662182
[44]
Zulianello, L; Canard, C; Kohler, T; Caille, D; Lacroix, JS; Meda, P. Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosa. Infect. Immun?2006, 74, 3134–3147, doi:10.1128/IAI.01772-05. 16714541
[45]
Andr?, J; Rademann, J; Howe, J; Koch, MH; Heine, H; Z?hringer, U; Brandenburg, K. Endotoxin-like properties of a rhamnolipid exotoxin from Burkholderia (Pseudomonas) plantarii: Immune cell stimulation and biophysical characterization. Biol. Chem?2006, 387, 301–310. 16542152
[46]
Bauer, J; Brandenburg, K; Z?hringer, U; Rademann, J. Chemical synthesis of a glycolipid library by a solid-phase strategy allows elucidation of the structural specificity of immunostimulation by rhamnolipids. Chemistry?2006, 12, 7116–7124, doi:10.1002/chem.200600482. 16915594
[47]
Howe, J; Bauer, J; Andr?, J; Schromm, AB; Ernst, M; R?ssle, M; Z?hringer, U; Rademann, J; Brandenburg, K. Biophysical characterization of synthetic rhamnolipids. FEBS J?2006, 273, 5101–5112, doi:10.1111/j.1742-4658.2006.05507.x. 17059466
[48]
Bédard, M; McClure, C; Schiller, N; Francoeur, C; Cantin, A; Denis, M. Release of interleukin-8, interleukin-6, and colony- stimulating factors by upper airway epithelial cells: Implication for cystic fibrosis. Am. J. Resir. Cell Mol. Biol?1993, 9, 455–462.
[49]
Gerstel, U; Czapp, M; Bartels, J; Schroder, JM. Rhamnolipid-induced shedding of flagellin from Pseudomonas aeruginosa provokes hBD-2 and IL-8 response in human keratinocytes. Cell. Microbiol?2009, 11, 842–853, doi:10.1111/j.1462-5822.2009.01299.x. 19215625
[50]
Jourdan, E; Henry, G; Duby, F; Dommes, J; Barthelemy, JP; Thonart, P; Ongena, M. Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol. Plant-Microbe Interact?2009, 22, 456–468, doi:10.1094/MPMI-22-4-0456. 19271960
[51]
Ongena, M; Jourdan, E; Adam, A; Paquot, M; Brans, A; Joris, B; Arpigny, JL; Thonart, P. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol?2007, 9, 1084–1090, doi:10.1111/j.1462-2920.2006.01202.x. 17359279
[52]
Tran, H; Ficke, A; Asiimwe, T; Hofte, M; Raaijmakers, JM. Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol?2007, 175, 731–742, doi:10.1111/j.1469-8137.2007.02138.x. 17688588
[53]
D’Aes, J; De Maeyer, K; Pauwelyn, E; H?fte, M. Biosurfactants in plant–Pseudomonas interactions and their importance to biocontrol. Env. Microbiol. Rep?2010, 2, 359–372.
[54]
Stipcevic, T; Piljac, A; Piljac, G. Enhanced healing of full-thickness burn wounds using di-rhamnolipid. Burns?2006, 32, 24–34, doi:10.1016/j.burns.2005.07.004. 16380213
[55]
Stipcevic, T; Piljac, T; Isseroff, RR. Di-rhamnolipid from Pseudomonas aeruginosa displays differential effects on human keratinocyte and fibroblast cultures. J. Dermatol Sci?2005, 40, 141–143, doi:10.1016/j.jdermsci.2005.08.005. 16199139
[56]
Fujita, K; Akino, T; Yoshioka, H. Characteristics of heat-stable extracellular hemolysin from Pseudomonas aeruginosa. Infect. Immun?1988, 56, 1385–1387. 3128485
[57]
Haussler, S; Nimtz, M; Domke, T; Wray, V; Steinmetz, I. Purification and characterization of a cytotoxic exolipid of Burkholderia pseudomallei. Infect. Immun?1998, 66, 1588–1593. 9529085