This paper investigates a method for the determination of the maximum sampling error and confidence intervals of thermal properties obtained from thermogravimetric analysis (TG analysis) for several lignocellulosic materials (ground olive stone, almond shell, pine pellets and oak pellets), completing previous work of the same authors. A comparison has been made between results of TG analysis and prompt analysis. Levels of uncertainty and errors were obtained, demonstrating that properties evaluated by TG analysis were representative of the overall fuel composition, and no correlation between prompt and TG analysis exists. Additionally, a study of trends and time correlations is indicated. These results are particularly interesting for biomass energy applications.
References
[1]
Kyoto Protocol to the United Nations Framework Convention on Climate Change; United Nations: New York, NY, USA, 1998.
[2]
Vamvuka, D; Kakaras, E; Kastanaki, E; Grammelis, P. Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. Fuel?2003, 82, 1949–1960, doi:10.1016/S0016-2361(03)00153-4.
[3]
Pazó, JA; Granada, E; Saavedra, A; Eguía, P; Collazo, J. Biomass thermogravimetric analysis: Uncertainty determination methodology and sampling maps generation. Int. J. Mol. Sci?2010, 11, 2701–2714, doi:10.3390/ijms11072701. 20717532
[4]
Osvalda, S. Kinetics of pyrolysis, combustion and gasification of three biomass fuels. Fuel Proc. Technol?2007, 88, 87–97, doi:10.1016/j.fuproc.2006.09.002.
[5]
Zhaosheng, Y; Xiaoqian, M; Ao, L. Kinetic studies on catalytic combustion of rice and wheat straw under air- and oxygen-enriched atmospheres, by using thermogravimetric analysis. Biomass Bioenerg?2008, 32, 1046–055, doi:10.1016/j.biombioe.2008.02.001.
[6]
Pitard, FF; Gy, P. Sampling Theory and Sampling Practice, 2nd ed ed.; CRC Press Ltd: Boca Raton, FL, USA, 1993.
[7]
Smith, PL. A Primer for Sampling Solids, Liquids, and Gases; Siam: Philadelphia, PA, USA, 2001.
[8]
Petersen, L; Minkkinen, P; Esbensen, KH. Representative sampling for reliable data analysis: theory of sampling. Chemometr. Intell. Lab. Syst?2005, 77, 261–277, doi:10.1016/j.chemolab.2004.09.013.
[9]
Petersen, L; Dahl, CK; Esbensen, KH. Representative mass reduction in sampling - A critical survey of techniques and hardware. Chemometr. Intell. Lab. Syst?2004, 74, 95–114, doi:10.1016/j.chemolab.2004.03.020.
[10]
Salazar, JC; Baena, A. Análisis y dise?o de experimentos aplicados a estudios de simulación. Dyna?2009, 159, 249–257.
[11]
Pazó, JA; Granada, E; Saavedra, A; Estévez, X; Comesa?a, R. Process optimization of sampling and determining the uncertainty associated with the properties of solid fuels for co-combustion. Dyna?2010, 161, 109–119.
[12]
Pazó, JA; Granada, E; Saavedra, A; Pati?o, D; Collazo, J. Heterogenic solid biofuel sampling methodology and uncertainty associated with prompt analysis. Int. J. Mol. Sci?2010, 11, 2118–2133, doi:10.3390/ijms11052118. 20559506
[13]
Tristancho, J; Vasquez, C; Pe?a, D. Hot corrosion study of AISI-SAE 304H alloyd, by using the electrochemical impedance spectroscopy technique. Dyna?2007, 153, 119–124.
[14]
Berlanga-Labari, C; Fernández-Carrasquilla, J. Revisión sobre la corrosión de tubos sobrecalentadores en plantas de biomasa. Revista de Metalurgia?2006, 42, 299–317.
[15]
Solid biouels. Sampling. Part 1: Methods for sampling; BSI: Milton Keynes, UK, 2006.
[16]
Gy, P. Sampling of discrete materials. I-V. Chemometr. Intell. Lab. Syst?2005, 74, 261–277.
[17]
Encinar, JM; Beltran, FJ; Bernalte, A; Ramiro, A; González, JF. Pyrolysis of two agricultural residues: Olive and grape bagasse. Influence of particle size and temperature. Biomass Bioenerg?1999, 11, 397–409.