全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Three-Dimensional Models of the Oligomeric Human Asialoglycoprotein Receptor (ASGP-R)

DOI: 10.3390/ijms11103867

Keywords: ASGP-R, oligomeric form, antennary carbohydratic ligands

Full-Text   Cite this paper   Add to My Lib

Abstract:

The work presented here is aimed at suggesting plausible hypotheses for functional oligomeric forms of the human asialoglycoprotein receptor (ASGP-R), by applying a combination of different computational techniques. The functional ASGP-R is a hetero-oligomer, that comprises of several subunits of two different kinds (H1 and H2), which are highly homologous. Its stoichiometry is still unknown. An articulated step-wise modeling protocol was used in order to build the receptor model in a minimal oligomeric form, necessary for it to bind multi-antennary carbohydrate ligands. The ultimate target of the study is to contribute to increasing the knowledge of interactions between the human ASGP-R and carbohydrate ligands, at the molecular level, pertinent to applications in the field of hepatic tissue engineering.

References

[1]  Bider, MD; Wahlberg, JM; Kammerer, RA; Spiess, M. The oligomerization domain of the asialoglycoprotein receptor preferentially forms 2:2 heterotetramers in vitro. J. Biol. Chem?1996, 271, 31996–32001, doi:10.1074/jbc.271.50.31996. 8943247
[2]  Yik, JH; Saxena, A; Weigel, PH. The minor subunit splice variants, H2b and H2c, of the human asialoglycoprotein receptor are present with the major subunit H1 in different hetero-oligomeric receptor complexes. J. Biol. Chem?2002, 277, 23076–23083, doi:10.1074/jbc.M202748200. 11943787
[3]  Baenziger, JU; Maynard, Y. Human hepatic lectin. Physiochemical properties and specificity. J. Biol. Chem?1980, 255, 4607–4613. 7372599
[4]  Henis, YI; Katzir, Z; Shia, MA; Lodish, HF. Oligomeric structure of the human asialoglycoprotein receptor: nature and stoichiometry of mutual complexes containing H1 and H2 polypeptides assessed by fluorescence photobleaching recovery. J. Cell. Biol?1990, 111, 1409–1418, doi:10.1083/jcb.111.4.1409. 2211817
[5]  Drickamer, K. C-type lectin-like domains. Curr. Opin. Struct. Biol?1999, 9, 585–590, doi:10.1016/S0959-440X(99)00009-3. 10508765
[6]  Spiess, M. The asialoglycoprotein receptor: a model for endocytic transport receptors. Biochemistry?1990, 29, 10009–10018, doi:10.1021/bi00495a001. 2125488
[7]  Spiess, M; Lodish, HF. Sequence of a second human asialoglycoprotein receptor: conservation of two receptor genes during evolution. Proc. Natl. Acad. Sci. USA?1985, 82, 6465–6469, doi:10.1073/pnas.82.19.6465. 3863106
[8]  Iobst, ST; Wormald, MR; Weis, WI; Dwek, RA; Drickamer, K. Binding of sugar ligands to Ca(2+)-dependent animal lectins. I. Analysis of mannose binding by site-directed mutagenesis and NMR. J. Biol. Chem?1994, 269, 15505–15511. 8195194
[9]  Lodish, HF. Recognition of complex oligosaccharides by the multi-subunit asialoglycoprotein receptor. Trends Biochem. Sci?1991, 16, 374–377, doi:10.1016/0968-0004(91)90154-N. 1785139
[10]  Meier, M; Bider, MD; Malashkevich, VN; Spiess, M; Burkhard, P. Crystal structure of the carbohydrate recognition domain of the H1 subunit of the asialoglycoprotein receptor. J. Mol. Biol?2000, 300, 857–865, doi:10.1006/jmbi.2000.3853. 10891274
[11]  Rice, KG; Weisz, OA; Barthel, T; Lee, RT; Lee, YC. Defined geometry of binding between triantennary glycopeptide and the asialoglycoprotein receptor of rat heptocytes. J. Biol. Chem?1990, 265, 18429–18434. 2211711
[12]  Lovell, SC; Davis, IW; Arendall, WB, III; de Bakker, PIW; Word, JM; Prisant, MG; Richardson, JS; Richardson, DC. Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins?2003, 50, 437–450, doi:10.1002/prot.10286. 12557186
[13]  Q-SiteFinder: Ligand Binding Site Prediction; Faculty of Biological Science, University of Leeds: Leeds, UK. Available at: http://bmbpcu36.leeds.ac.uk/qsitefinder/ (accessed on 27 September 2010).
[14]  Introduction to the Protein-Protein Interface Analysis Server; PROTORP. Available at: http://www.bioinformatics.sussex.ac.uk/protorp/ (accessed on 11 Ocotober 2010).
[15]  Bahadur, R; Chakrabarti, P; Rodier, F; Janin, J. A dissection of specific and non-specific protein-protein interfaces. J. Mol. Biol?2004, 336, 943–955, doi:10.1016/j.jmb.2003.12.073. 15095871
[16]  Berman, HM; Westbrook, J; Feng, Z; Gilliland, G; Bhat, TN; Weissig, H; Shindyalov, IN; Bourne, PE. The protein data bank. Nucl. Acids Res?2000, 28, 235–242, doi:10.1093/nar/28.1.235. 10592235
[17]  Sweet; German Cancer Research Center: Hedinberg, Germany. Available at: http://www.glycosciences.de/modeling/sweet2/doc/index.php?left=fwork.html&main (accessed on 27 September 2010).
[18]  InsightII; Accelrys, Inc: San Diego, CA, USA.
[19]  Guex, N; Peitsch, MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis?1997, 18, 2714–2723, doi:10.1002/elps.1150181505. 9504803
[20]  ClustalW2; EMBL-EBI: Cambridge, UK. Available at: http://www.ebi.ac.uk/Tools/clustalw2/index.html (accessed on 27 September 2010).
[21]  Gray, JJ; Moughan, SE; Wang, C; Schueler-Furman, O; Kuhlman, B; Rohl, CA; Baker, D. Protein-protein docking with simultaneous optimization of rigid-body displacement and sidechain conformations. J. Mol. Biol?2003, 331, 281–299, doi:10.1016/S0022-2836(03)00670-3. 12875852
[22]  Ritchie, DW. Evaluation of protein docking predictions using Hex 3.1 in CAPRI rounds 1 and 2. Proteins?2003, 52, 98–106, doi:10.1002/prot.10379. 12784374
[23]  Tovchigrechko, A; Vakser, IA. Molecular beacons with intrinsically fluorescent nucleotides. Nucleic Acids Res?2006, 34, 1–7, doi:10.1093/nar/gkj405. 16397293
[24]  Morris, GM; Goodsell, DS; Halliday, RS; Huey, R; Hart, WE; Belew, RK; Olson, AJ. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem?1998, 19, 1639–1662, doi:10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133