全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

SwarmDock and the Use of Normal Modes in Protein-Protein Docking

DOI: 10.3390/ijms11103623

Keywords: elastic network model, normal mode analysis, particle swarm optimisation, PSO, protein flexibility, RTB, CAPRI

Full-Text   Cite this paper   Add to My Lib

Abstract:

Here is presented an investigation of the use of normal modes in protein-protein docking, both in theory and in practice. Upper limits of the ability of normal modes to capture the unbound to bound conformational change are calculated on a large test set, with particular focus on the binding interface, the subset of residues from which the binding energy is calculated. Further, the SwarmDock algorithm is presented, to demonstrate that the modelling of conformational change as a linear combination of normal modes is an effective method of modelling flexibility in protein-protein docking.

References

[1]  Katchalski-Katzir, E; Shariv, I; Eisenstein, M; Friesem, AA; Aflalo, C; Vakser, IA. Molecular surface recognition: Determination of geometric fit between proteins and their ligands by correlation techniques. Proc. Natl. Acad. Sci. USA?1992, 89, 2195–2199, doi:10.1073/pnas.89.6.2195. 1549581
[2]  Chen, R; Weng, Z. Docking unbound proteins using shape complementarity, desolvation, and electrostatics. Proteins?2002, 47, 281–294, doi:10.1002/prot.10092. 11948782
[3]  Schneidman-Duhovny, D; Inbar, Y; Nussinov, R; Wolfson, HJ. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res?2005, 33, W363–367, doi:10.1093/nar/gki481. 15980490
[4]  Shentu, Z; Al Hasan, M; Bystroff, C; Zaki, MJ. Context shapes: Efficient complementary shape matching for protein-protein docking. Proteins?2008, 70, 1056–1073. 17847098
[5]  Li, N; Sun, Z; Jiang, F. SOFTDOCK application to protein-protein interaction benchmark and CAPRI. Proteins?2007, 69, 801–808, doi:10.1002/prot.21728. 17803216
[6]  Jackson, RM; Gabb, HA; Sternberg, MJ. Rapid refinement of protein interfaces incorporating solvation: application to the docking problem. J. Mol. Biol?1998, 276, 265–285, doi:10.1006/jmbi.1997.1519. 9514726
[7]  Mandell, JG; Roberts, VA; Pique, ME; Kotlovyi, V; Mitchell, JC; Nelson, E; Tsigelny, I; Ten Eyck, LF. Protein docking using continuum electrostatics and geometric fit. Protein Eng?2001, 14, 105–113, doi:10.1093/protein/14.2.105. 11297668
[8]  Ritchie, DW; Kemp, GJ. Protein docking using spherical polar Fourier correlations. Proteins?2000, 39, 178–194, doi:10.1002/(SICI)1097-0134(20000501)39:2<178::AID-PROT8>3.0.CO;2-6. 10737939
[9]  Tovchigrechko, A; Vakser, IA. Development and testing of an automated approach to protein docking. Proteins?2005, 60, 296–301, doi:10.1002/prot.20573. 15981259
[10]  Zacharias, M. Protein-protein docking with a reduced protein model accounting for side-chain flexibility. Protein Sci?2003, 12, 1271–1282, doi:10.1110/ps.0239303. 12761398
[11]  Gardiner, EJ; Willett, P; Artymiuk, PJ. Protein docking using a genetic algorithm. Proteins?2001, 44, 44–56, doi:10.1002/prot.1070. 11354005
[12]  Smith, GR; Sternberg, MJ; Bates, PA. The relationship between the flexibility of proteins and their conformational states on forming protein-protein complexes with an application to protein-protein docking. J. Mol. Biol?2005, 347, 1077–1101, doi:10.1016/j.jmb.2005.01.058. 15784265
[13]  Grunberg, R; Leckner, J; Nilges, M. Complementarity of structure ensembles in protein-protein binding. Structure?2004, 12, 2125–2136, doi:10.1016/j.str.2004.09.014. 15576027
[14]  Krol, M; Chaleil, RA; Tournier, AL; Bates, PA. Implicit flexibility in protein docking: Cross-docking and local refinement. Proteins?2007, 69, 750–757, doi:10.1002/prot.21698. 17671977
[15]  Krol, M; Tournier, AL; Bates, PA. Flexible relaxation of rigid-body docking solutions. Proteins?2007, 68, 159–169, doi:10.1002/prot.21391. 17397060
[16]  Dominguez, C; Boelens, R; Bonvin, AM. HADDOCK: A protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc?2003, 125, 1731–1737, doi:10.1021/ja026939x. 12580598
[17]  Gray, JJ; Moughon, S; Wang, C; Schueler-Furman, O; Kuhlman, B; Rohl, CA; Baker, D. Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J. Mol. Biol?2003, 331, 281–299, doi:10.1016/S0022-2836(03)00670-3. 12875852
[18]  Comeau, SR; Gatchell, DW; Vajda, S; Camacho, CJ. ClusPro: An automated docking and discrimination method for the prediction of protein complexes. Bioinformatics?2004, 20, 45–50, doi:10.1093/bioinformatics/btg371. 14693807
[19]  Camacho, CJ; Gatchell, DW. Successful discrimination of protein interactions. Proteins?2003, 52, 92–97, doi:10.1002/prot.10394. 12784373
[20]  Li, L; Chen, R; Weng, Z. RDOCK: Refinement of rigid-body protein docking predictions. Proteins?2003, 53, 693–707, doi:10.1002/prot.10460. 14579360
[21]  Andrusier, N; Nussinov, R; Wolfson, HJ. FireDock: Fast interaction refinement in molecular docking. Proteins?2007, 69, 139–159, doi:10.1002/prot.21495. 17598144
[22]  Fernndez-Recio, J; Totrov, M; Abagyan, R. ICM-DISCO docking by global energy optimization with fully flexible side-chains. Proteins?2003, 52, 113–117, doi:10.1002/prot.10383. 12784376
[23]  Bastard, K; Prvost, C; Zacharias, M. Accounting for loop flexibility during protein-protein docking. Proteins?2006, 62, 956–969. 16372349
[24]  Schneidman-Duhovny, D; Inbar, Y; Nussinov, R; Wolfson, HJ. Geometry-based flexible and symmetric protein docking. Proteins?2005, 60, 224–231, doi:10.1002/prot.20562. 15981269
[25]  Tirion, MM. Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis. Phys. Rev. Lett?1996, 77, 1905–1908, doi:10.1103/PhysRevLett.77.1905. 10063201
[26]  Bahar, I; Atilgan, AR; Erman, B. Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des?1997, 2, 173–181, doi:10.1016/S1359-0278(97)00024-2. 9218955
[27]  Yang, LW; Eyal, E; Chennubhotla, C; Jee, J; Gronenborn, AM; Bahar, I. Insights into equilibrium dynamics of proteins from comparison of NMR and X-ray data with computational predictions. Structure?2007, 15, 741–749, doi:10.1016/j.str.2007.04.014. 17562320
[28]  Rueda, M; Chacon, P; Orozco, M. Thorough validation of protein normal mode analysis: A comparative study with essential dynamics. Structure?2007, 15, 565–575, doi:10.1016/j.str.2007.03.013. 17502102
[29]  Yang, L; Song, G; Jernigan, RL. How well can we understand large-scale protein motions using normal modes of elastic network models? Biophys. J?2007, 93, 920–929, doi:10.1529/biophysj.106.095927. 17483178
[30]  Krebs, WG; Alexandrov, V; Wilson, CA; Echols, N; Yu, H; Gerstein, M. Normal mode analysis of macromolecular motions in a database framework: Developing mode concentration as a useful classifying statistic. Proteins?2002, 48, 682–695, doi:10.1002/prot.10168. 12211036
[31]  Tama, F; Sanejouand, YH. Conformational change of proteins arising from normal mode calculations. Protein Eng?2001, 14, 1–6, doi:10.1093/protein/14.1.1. 11287673
[32]  Atilgan, AR; Durell, SR; Jernigan, RL; Demirel, MC; Keskin, O; Bahar, I. Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J?2001, 80, 505–515, doi:10.1016/S0006-3495(01)76033-X. 11159421
[33]  Dobbins, SE; Lesk, VI; Sternberg, MJ. Insights into protein flexibility: The relationship between normal modes and conformational change upon protein-protein docking. Proc. Natl. Acad. Sci. USA?2008, 105, 10390–10395, doi:10.1073/pnas.0802496105. 18641126
[34]  Cui, Q; Li, G; Ma, J; Karplus, M. A normal mode analysis of structural plasticity in the biomolecular motor F(1)-ATPase. J. Mol. Biol?2004, 340, 345–372, doi:10.1016/j.jmb.2004.04.044. 15201057
[35]  Petrone, P; Pande, VS. Can conformational change be described by only a few normal modes? Biophys. J?2006, 90, 1583–1593, doi:10.1529/biophysj.105.070045. 16361336
[36]  Tama, F; Miyashita, O; Brooks, CL. Normal mode based flexible fitting of high-resolution structure into low-resolution experimental data from cryo-EM. J. Struct. Biol?2004, 147, 315–326, doi:10.1016/j.jsb.2004.03.002. 15450300
[37]  Mustard, D; Ritchie, DW. Docking essential dynamics eigenstructures. Proteins?2005, 60, 269–274, doi:10.1002/prot.20569. 15981272
[38]  Andrusier, N; Mashiach, E; Nussinov, R; Wolfson, HJ. Principles of flexible protein-protein docking. Proteins?2008, 73, 271–289, doi:10.1002/prot.22170. 18655061
[39]  Bonvin, AM. Flexible protein-protein docking. Curr. Opin. Struct. Biol?2006, 16, 194–200, doi:10.1016/j.sbi.2006.02.002. 16488145
[40]  May, A; Zacharias, M. Accounting for global protein deformability during protein-protein and protein-ligand docking. Biochim. Biophys. Acta?2005, 1754, 225–231, doi:10.1016/j.bbapap.2005.07.045. 16214429
[41]  Rueda, M; Bottegoni, G; Abagyan, R. Consistent improvement of cross-docking results using binding site ensembles generated with elastic network normal modes. J. Chem. Inf. Model?2009, 49, 716–725, doi:10.1021/ci8003732. 19434904
[42]  Zacharias, M; Sklenar, H. Harmonic modes as variables to approximately account for receptor flexibility in ligand-receptor docking simulations: Application to DNA minor groove ligand complex. J. Comp. Chem?1999, 20, 287–300, doi:10.1002/(SICI)1096-987X(199902)20:3<287::AID-JCC1>3.0.CO;2-H.
[43]  Lindahl, E; Delarue, M. Refinement of docked protein-ligand and protein-DNA structures using low frequency normal mode amplitude optimization. Nucleic Acids Res?2005, 33, 4496–4506, doi:10.1093/nar/gki730. 16087736
[44]  May, A; Zacharias, M. Protein-ligand docking accounting for receptor side chain and global flexibility in normal modes: Evaluation on kinase inhibitor cross docking. J. Med. Chem?2008, 51, 3499–3506, doi:10.1021/jm800071v. 18517186
[45]  Floquet, N; Marechal, JD; Badet-Denisot, MA; Robert, CH; Dauchez, M; Perahia, D. Normal mode analysis as a prerequisite for drug design: application to matrix metalloproteinases inhibitors. FEBS Lett?2006, 580, 5130–5136, doi:10.1016/j.febslet.2006.08.037. 16962102
[46]  Sander, T; Liljefors, T; Balle, T. Prediction of the receptor conformation for iGluR2 agonist binding: QM/MM docking to an extensive conformational ensemble generated using normal mode analysis. J. Mol. Graph. Model?2008, 26, 1259–1268, doi:10.1016/j.jmgm.2007.11.006. 18203639
[47]  Cavasotto, CN; Kovacs, JA; Abagyan, RA. Representing receptor flexibility in ligand docking through relevant normal modes. J. Am. Chem. Soc?2005, 127, 9632–9640, doi:10.1021/ja042260c. 15984891
[48]  Kovacs, JA; Cavasotto, CN; Abagyan, R. Conformational Sampling of Protein Flexibility in Generalized Coordinates: Application to Ligand Docking. J. Comput. Theor. Nanosci?2005, 2, 354–361, doi:10.1166/jctn.2005.204.
[49]  May, A; Zacharias, M. Energy minimization in low-frequency normal modes to efficiently allow for global flexibility during systematic protein-protein docking. Proteins?2008, 70, 794–809. 17729269
[50]  Mashiach, E; Nussinov, R; Wolfson, HJ. FiberDock: Flexible induced-fit backbone refinement in molecular docking. Proteins?2010, 78, 1503–1519. 20077569
[51]  Hwang, H; Pierce, B; Mintseris, J; Janin, J; Weng, Z. Protein-protein docking benchmark version 3.0. Proteins?2008, 73, 705–709, doi:10.1002/prot.22106. 18491384
[52]  Canutescu, AA; Shelenkov, AA; Dunbrack, RL. A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci?2003, 12, 2001–2014, doi:10.1110/ps.03154503. 12930999
[53]  Rotkiewicz, P; Skolnick, J. Fast procedure for reconstruction of full-atom protein models from reduced representations. J. Comput. Chem?2008, 29, 1460–1465, doi:10.1002/jcc.20906. 18196502
[54]  Kennedy, J; Eberhart, RC. Particle Swarm Optimization. Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia; 1995; 4, pp. 1942–1948.
[55]  Solis, FJ; Wets, RJB. Minimization by Random Search Techniques. Math. Oper. Res?1981, 6, 19–30, doi:10.1287/moor.6.1.19.
[56]  Sousa, T; Silva, A; Neves, A. Particle swarm based Data Mining Algorithms for classification tasks. Parallel Comput?2004, 30, 767–783, doi:10.1016/j.parco.2003.12.015.
[57]  Xiao, X; Dow, ER; Eberhart, R; Miled, ZB; Oppelt, RJ. Gene Clustering Using Self-Organizing Maps and Particle Swarm Optimization. Proceedings of the International Parallel and Distributed Processing Symposium, Nice, France; 2003; p. 154b.
[58]  Rasmussen, TK; Krink, T. Improved Hidden Markov Model training for multiple sequence alignment by a particle swarm optimization-evolutionary algorithm hybrid. BioSystems?2003, 72, 5–17, doi:10.1016/S0303-2647(03)00131-X. 14642655
[59]  Namasivayam, V; Gunther, R. PSO@Autodock: A fast flexible molecular docking program based on Swarm intelligence. Chem. Biol. Drug Des?2007, 70, 475–484, doi:10.1111/j.1747-0285.2007.00588.x. 17986206
[60]  Chen, HM; Liu, BF; Huang, HL; Hwang, SF; Ho, SY. SODOCK: Swarm optimization for highly flexible protein-ligand docking. J. Comput. Chem?2007, 28, 612–623, doi:10.1002/jcc.20542. 17186483
[61]  Janson, S; Merkle, S; Middendorf, M. Molecular docking with multi-objective Particle Swarm Optimization. Appl. Soft Comput?2008, 8, 666–675, doi:10.1016/j.asoc.2007.05.005.
[62]  Li, X; Moal, IH; Bates, PA. Detection and Refinement of Encounter Complexes for Protein-Protein Docking: Taking Account of Macromolecular Crowding. Proteins?2010, doi:10.1002/prot.22770.
[63]  Magnusson, U; Chaudhuri, BN; Ko, J; Park, C; Jones, TA; Mowbray, SL. Hinge-bending motion of D-allose-binding protein from Escherichia coli: Three open conformations. J. Biol. Chem?2002, 277, 14077–14084, doi:10.1074/jbc.M200514200. 11825912
[64]  Arnold, GE; Ornstein, RL. Protein hinge bending as seen in molecular dynamics simulations of native and M61 mutant T4 lysozymes. Biopolymers?1997, 41, 533–544, doi:10.1002/(SICI)1097-0282(19970415)41:5<533::AID-BIP5>3.0.CO;2-N. 9095676
[65]  Boehr, DD; Nussinov, R; Wright, PE. The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol?2009, 5, 789–796, doi:10.1038/nchembio.232. 19841628
[66]  Isabet, T; Montagnac, G; Regazzoni, K; Raynal, B; El Khadali, F; England, P; Franco, M; Chavrier, P; Houdusse, A; Menetrey, J. The structural basis of Arf effector specificity: The crystal structure of ARF6 in a complex with JIP4. EMBO J?2009, 28, 2835–2845, doi:10.1038/emboj.2009.209. 19644450
[67]  O’Neal, CJ; Jobling, MG; Holmes, RK; Hol, WG. Structural basis for the activation of cholera toxin by human ARF6-GTP. Science?2005, 309, 1093–1096, doi:10.1126/science.1113398. 16099990
[68]  Offman, MN; Tournier, AL; Bates, PA. Alternating evolutionary pressure in a genetic algorithm facilitates protein model selection. BMC Struct. Biol?2008, 8, 34, doi:10.1186/1472-6807-8-34. 18673557
[69]  O’Shea, EK; Klemm, JD; Kim, PS; Alber, T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science?1991, 254, 539–544, doi:10.1126/science.1948029. 1948029
[70]  Katz, BA; Finer-Moore, J; Mortezaei, R; Rich, DH; Stroud, RM. Episelection: Novel Ki approximately nanomolar inhibitors of serine proteases selected by binding or chemistry on an enzyme surface. Biochemistry?1995, 34, 8264–8280, doi:10.1021/bi00026a008. 7599119
[71]  Kurkcuoglu, O; Jernigan, RL; Doruker, P. Loop motions of triosephosphate isomerase observed with elastic networks. Biochemistry?2006, 45, 1173–1182, doi:10.1021/bi0518085. 16430213
[72]  Brooks, BR; Janezic, D; Karplus, M. Harmonic analysis of large systems. I. Methodology. J. Comp. Chem?1995, 16, 1522–1542, doi:10.1002/jcc.540161209.
[73]  Tama, F; Gadea, FX; Marques, O; Sanejouand, YH. Building-block approach for determining low-frequency normal modes of macromolecules. Proteins?2000, 41, 1–7. 10944387
[74]  Suhre, K; Sanejouand, YH. ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res?2004, 32, W610–W614, doi:10.1093/nar/gkh368. 15215461
[75]  Dongarra, J. Basic Linear Algebra Subprograms Technical Forum Standard. Int. J. High Perform. Appl. Supercomput?2002, 16, 115–199, doi:10.1177/10943420020160020101.
[76]  Tama, F; Gadea, FX; Marques, O; Sanejouand, YH. Building-block approach for determining low-frequency normal modes of macromolecules. Proteins?2000, 41, 1–7. 10944387
[77]  Li, G; Cui, Q. A coarse-grained normal mode approach for macromolecules: an efficient implementation and application to Ca2+-ATPase. Biophys. J?2002, 83, 2457–2474, doi:10.1016/S0006-3495(02)75257-0. 12414680
[78]  Durand, P; Trinquier, G; Sanejouand, YH. A new approach for determining low-frequency normal modes in macromolecules. Biopolymers?1994, 34, 759–771, doi:10.1002/bip.360340608.
[79]  Durand, P. Direct determination of effective Hamiltonians by wave-operator methods. I. General formalism. Phys. Rev. A?1983, 28, 3184–3192, doi:10.1103/PhysRevA.28.3184.
[80]  Marques, O; Sanejouand, YH. Hinge-bending motion in citrate synthase arising from normal mode calculations. Proteins?1995, 23, 557–560, doi:10.1002/prot.340230410. 8749851
[81]  Chen, R; Mintseris, J; Janin, J; Weng, Z. A protein-protein docking benchmark. Proteins?2003, 52, 88–91, doi:10.1002/prot.10390. 12784372
[82]  Mendez, R; Leplae, R; de Maria, L; Wodak, SJ. Assessment of blind predictions of protein-protein interactions: current status of docking methods. Proteins?2003, 52, 51–67, doi:10.1002/prot.10393. 12784368
[83]  MacKerell, AD; Bashford, D; Bellott; Dunbrack, RL; Evanseck, JD; Field, MJ; Fischer, S; Gao, J; Guo, H; Ha, S; Joseph-McCarthy, D; Kuchnir, L; Kuczera, K; Lau, FTK; Mattos, C; Michnick, S; Ngo, T; Nguyen, DT; Prodhom, B; Reiher, WE; Roux, B; Schlenkrich, M; Smith, JC; Stote, R; Straub, J; Watanabe, M; Wiorkiewicz-Kuczera, J; Yin, D; Karplus, M. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B?1998, 102, 3586–3616, doi:10.1021/jp973084f.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133