全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Origin and Distribution of Thiophenes and Furans in Gas Discharges from Active Volcanoes and Geothermal Systems

DOI: 10.3390/ijms11041434

Keywords: heteroaromatics, geothermal fluids, volcanic fluids, furans, thiophenes

Full-Text   Cite this paper   Add to My Lib

Abstract:

The composition of non-methane organic volatile compounds (VOCs) determined in 139 thermal gas discharges from 18 different geothermal and volcanic systems in Italy and Latin America, consists of C 2–C 20 species pertaining to the alkanes, alkenes, aromatics and O-, S- and N-bearing classes of compounds. Thiophenes and mono-aromatics, especially the methylated species, are strongly enriched in fluids emissions related to hydrothermal systems. Addition of hydrogen sulphide to dienes and electrophilic methylation involving halogenated radicals may be invoked for the formation of these species. On the contrary, the formation of furans, with the only exception of C 4H 8O, seems to be favoured at oxidizing conditions and relatively high temperatures, although mechanisms similar to those hypothesized for the production of thiophenes can be suggested. Such thermodynamic features are typical of fluid reservoirs feeding high-temperature thermal discharges of volcanoes characterised by strong degassing activity, which are likely affected by conspicuous contribution from a magmatic source. The composition of heteroaromatics in fluids naturally discharged from active volcanoes and geothermal areas can then be considered largely dependent on the interplay between hydrothermal vs. magmatic contributions. This implies that they can be used as useful geochemical tools to be successfully applied in both volcanic monitoring and geothermal prospection.

References

[1]  Fischer, TP; Arehart, GB; Sturchio, NC; Williams, SN. The relationship between fumarole gas composition and eruptive activity at Galeras Volcano (Colombia). Geology?1996, 24, 531–534, doi:10.1130/0091-7613(1996)024<0531:TRBFGC>2.3.CO;2.
[2]  Giggenbach, WF. The origin and evolution of fluids in magmatic-hydrothermal systems. In Geochemistry of Hydrothermal Ore Deposits, 3rd ed; Barnes, HL, Ed.; Wiley: New York, NY, USA, 1997; pp. 737–796.
[3]  Hirabayashi, J; Kusakabe, M. A review on the chemical precursors of volcanic eruptions. Bull Volcanol Soc Jpn?1985, 30, 171–183. (in Japanese).
[4]  Martini, M; Giannini, L; Buccianti, A; Prati, F; Cellini Legittimo, P; Iozzelli, P; Capaccioni, B. Ten years of geochemical monitoring at Phlegrean Fields, Italy. J. Volcanol. Geotherm. Res?1991, 48, 161–171, doi:10.1016/0377-0273(91)90040-7.
[5]  Chiodini, G; Marini, L. Hydrothermal gas equilibria: The H2O-H2-CO2-CO-CH4 system. Geochim. Cosmochim. Acta?1998, 62, 2673–2687, doi:10.1016/S0016-7037(98)00181-1.
[6]  Giggenbach, WF. Geothermal gas equilibria. Geochim. Cosmochim. Acta?1980, 44, 2021–2032, doi:10.1016/0016-7037(80)90200-8.
[7]  Gerlach, TM; Nordlie, BE. The C–O–H–S gaseous system. Part II: Temperature, atomic composition and molecular equilibria in volcanic gases. Am. J. Sci?1975, 275, 377–394, doi:10.2475/ajs.275.4.377.
[8]  Giggenbach, WF. Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl. Geochem?1987, 2, 143–161, doi:10.1016/0883-2927(87)90030-8.
[9]  Giggenbach, WF. Chemical composition of volcanic gases. In Monitoring and mitigation of Volcanic Hazards; Scarpa, M, Tilling, RJ, Eds.; Springer: Heidelberg, Germany, 1996; pp. 221–256.
[10]  Doukas, MP; Gerlach, TM. Sulfur dioxide scrubbing during the 1992 eruptions of Crater Peak, Mount Spurr Volcano, Alaska. In The 1992 Eruptions of Crater Peak Vent, Mount Spurr Volcano, Alaska; Keith, TEC, Ed.; US Geol Surv Bull: Mount Spurr Volcano, AK, USA, 1995; Volume 2139, pp. 47–57.
[11]  Symonds, RB; Gerlach, TM; Reed, MH. Magmatic gas scrubbing: Implications for volcano monitoring. J. Volcanol. Geotherm. Res?2001, 108, 303–341, doi:10.1016/S0377-0273(00)00292-4.
[12]  Capaccioni, B; Mangani, F. Monitoring of active but quiescent volcanoes using light hydrocarbon distribution in volcanic gases: The results of 4 years of discontinuous monitoring in the Campi Flegrei (Italy). Earth Planet. Sci. Lett?2001, 188, 543–555, doi:10.1016/S0012-821X(01)00338-7.
[13]  Taran, YA; Giggenbach, WF. Geochemistry of light hydrocarbons in subduction-related volcanic and hydrothermal fluids. In Volcanic, Geothermal, and Ore-Forming Fluids: Rulers and Witnesses of Processes within the Earth; Simmons, SF, Graham, IJ, Eds.; Soc Econ Geol: Littleton, CO, USA, 2003; pp. 61–74.
[14]  Tassi, F; Vaselli, O; Capaccioni, B; Giolito, C; Duarte, E; Fernandez, E; Minissale, A; Magro, G. The hydrothermal-volcanic system of the Rincon de la Vieja volcano (Costa Rica): A combined (inorganic and organic) geochemical approach to understanding the origin of the fluid discharges and its possible application to volcanic surveillance. J. Volcanol. Geotherm. Res?2005, 148, 315–333, doi:10.1016/j.jvolgeores.2005.05.001.
[15]  Tassi, F; Vaselli, O; Capaccioni, B; Montegrossi, G; Barahona, F; Caprai, A. Scrubbing process and chimica equilibria controlling the composition of light hydrocarbon in natural fluid discharges: An example from the geothermal fields of El Salvador. Geochem. Geophys. Geosys?2007, 8, Q05008, doi:10.1029/2006GC001487.
[16]  Giggenbach, WF. Chemical composition of volcanic gases. In Monitoring and Mitigation of Volcanic Hazards; Scarpa, M, Tilling, RJ, Eds.; Springer: New York, NY, USA, 1996; pp. 221–256.
[17]  Chiodini, G; Cioni, R; Marini, L; Panichi, C. Origin of the fumarolic fluids of Vulcano Island, Italy, and implications for volcanic surveillance. Bull. Volcanol?1995, 57, 99–110.
[18]  Gottsmann, J; Wooller, L; Martí, J; Fernández, J; Camacho, AG; González, PJ; García, A; Rymer, H. New evidence for the reawakening of Teide volcano. Geophys. Res. Lett?2006, 33, L20311, doi:10.1029/2006GL027523.
[19]  Tassi, F; Aguilera, F; Vaselli, O; Medina, E; Tedesco, D; Delgado Huertas, A; Poreda, R; Kojima, S. The magmatic- and hydrothermal-dominated fumarolic system at the Active Crater of Lascar volcano, northern Chile. Bull Volcanol?2009, 71, 171–183, doi:10.1007/s00445-008-0216-z.
[20]  Tassi, F; Vaselli, O; Barbosa, V; Fernandez, E; Duarte, E. Fluid geochemistry and seismic activity in the period 1998–2002 at Turrialba Volcano (Costa Rica). Ann. Geophys?2004, 47, 1501–1511.
[21]  Duchi, V; Minissale, A; Manganelli, M. Chemical composition of natural deep and shallow hydrothermal fluids in the Larderello geothermal field. J. Volcanol. Geotherm. Res?1992, 49, 313–328, doi:10.1016/0377-0273(92)90020-E.
[22]  Endeshaw, A. Current status (1987) of geothermal exploration in Ethiopia. Geothermics?1988, 17, 477–488, doi:10.1016/0375-6505(88)90077-6.
[23]  Tassi, F; Martinez, C; Vaselli, O; Capaccioni, B; Viramonte, J. Light hydrocarbons as redox and temperature indicators in the geothermal field of El Tatio (northern Chile). Appl. Geochem?2005, 20, 2049–2062, doi:10.1016/j.apgeochem.2005.07.013.
[24]  Chiodini, G; Marini, L; Russo, M. Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy. Geochim. Cosmochim. Acta?2001, 65, 2129–2147, doi:10.1016/S0016-7037(01)00583-X.
[25]  Duchi, V; Campana, ME; Minissale, A; Thompson, M. Geochemistry of thermal fluids on the vulcanic isle of Pantelleria, southern Italy. Appl. Geochem?1994, 9, 147–160, doi:10.1016/0883-2927(94)90004-3.
[26]  Fiebig, J; Chiodini, G; Caliro, S; Rizzo, A; Spangenberg, J; Hunziker, JC. Chemical and isotopic equilibrium between CO2 and CH4 in fumarolic gas discharges: Generation of CH4 in arc magmatic-hydrothermal systems. Geochim. Cosmochim. Acta?2004, 68, 2321–2334, doi:10.1016/j.gca.2003.10.035.
[27]  Hurwitz, S; Lowenstern, JB; Heasler, H. Spatial and temporal geochemical trends in the hydrothermal system of Yellowstone National Park: Inferences from river solute fluxes. J. Volcanol. Geotherm. Res?2007, 162, 149–171, doi:10.1016/j.jvolgeores.2007.01.003.
[28]  Inguaggiato, S; Pecoraino, G; D’Amore, F. Chemical and isotopical characterization of fluid manifestations of Ischia Island (Italy). J. Volcanol. Geotherm. Res?2000, 99, 151–178, doi:10.1016/S0377-0273(00)00158-X.
[29]  Lee, HF; Yang, TF; Lan, TF. Fumarolic gas composition of the Tatun Volcano Group, northern Taiwan. TAO?2005, 15, 843–864.
[30]  Taran, Y; Fischer, TP; Pokrovsky, B; Sano, Y; Armienta, MA; Macias, JL. Geochemistry of the volcano-hydrothermal system of El Chichon volcano, Chiapas, Mexico. Bull. Volcanol?1998, 59, 436–449, doi:10.1007/s004450050202.
[31]  Tedesco, D; Sabroux, JC. The determination of deep temperatures by mean of the CO-CO2-H2-H2O geothermometer: an example using the fumaroles in the Campi Flegrei, Italy. Bull. Volcanol?1987, 49, 381–387, doi:10.1007/BF01046631.
[32]  Mango, FD. The origin of light hydrocarbons. Geochim. Cosmochim. Acta?2000, 64, 1265–1277, doi:10.1016/S0016-7037(99)00389-0.
[33]  Capaccioni, B; Martini, M; Mangani, F; Giannini, L; Nappi, G; Prati, F. Light hydrocarbons in gas-emissions from volcanic areas and geothermal fields. Geochem. J?1993, 27, 7–17, doi:10.2343/geochemj.27.7.
[34]  Capaccioni, B; Tassi, F; Maione, M; Mangani, F; Vaselli, O. Organics in volcanic gases: A review on their distribution and applications to volcanic surveillance. Eos Trans AGU?2005, 86.
[35]  Darling, WG. Hydrothermal hydrocarbon gases: 1. Genesis and geothermometry. Appl. Geochem?1998, 13, 815–824, doi:10.1016/S0883-2927(98)00013-4.
[36]  Tassi, F. . Fluidi in Ambiente Vulcanico: Evoluzione Temporale dei Parametri Composizionali e Distribuzione Degli Idrocarburi Leggeri in Fase Gassosa. Ph.D. Thesis, Univ. of Florence: Florence, Italy, 2004.
[37]  Capaccioni, B; Martini, M; Mangani, F. Light hydrocarbons in hydrothermal and magmatic fumaroles: hints of catalytic and thermal reactions. Bull. Volcanol?1995, 56, 593–600.
[38]  Mango, FD; Hightower, JH; James, AT. Role of transition- metal catalysis in the formation of natural gas. Nature?1994, 368, 536–538, doi:10.1038/368536a0.
[39]  Tannenbaum, E; Kaplan, IR. Low-Mr hydrocarbons generated during hydrous and dry pyrolysis of kerogen. Nature?1985, 317, 708–710, doi:10.1038/317708a0. 11539657
[40]  North, FK. Petroleum Geology; Allen & Unwin: Boston, MA, USA, 1985.
[41]  Stockwell, DM; Bianchi, D; Bennett, CO. Carbon pathways in methanation and chain growth during the Fischer-Tropsch synthesis on Fe/Al2O3. J. Catal?1988, 113, 13–25, doi:10.1016/0021-9517(88)90233-3.
[42]  Gerlach, TM. Evaluation of volcanic gas analyses from Kilauea volcano. J. Volcanol. Geotherm. Res?1980, 7, 295–317, doi:10.1016/0377-0273(80)90034-7.
[43]  Lobert, JM; Warnatz, J. Emissions from the combustion processes in vegetation. In Fire in the Environment: The Ecological, Atmospheric, and Climate Importance of Vegetation Fires; Crutzen, PJ, Goldammer, JG, Eds.; Wiley: Hoboken, NJ, USA, 1993; pp. 15–37.
[44]  Gaffney, JS. Volcanic CFCs. Environ. Sci. Technol?1995, 29, A8.
[45]  Jordan, A; Harnisch, J; Borchers, R; Le Guern, FN; Shinohara, H. Volcanogenic halocarbons. Environ. Sci. Technol?2000, 34, 1122–1124, doi:10.1021/es990838q.
[46]  Rasmussen, RA; Rasmussen, LE; Khalil, MAK; Dalluge, RW. Concentration distribution of methyl chloride in the atmosphere. J. Geophys. Res?1980, 85, 7350–7356, doi:10.1029/JC085iC12p07350.
[47]  Schwandner, FM; Seward, TM; Gize, AP; Hall, PA; Dietrich, VJ. Diffuse emission of organic trace gases from the flank and crater of a quiescent active volcano (Vulcano, Aelian Islands, Italy). J. Geophys. Res?2004, 109, D04301, doi:10.1029/2003JD003890.
[48]  Manzano, BK; Fowler, MG; Machel, HG. The influence of thermochemical sulphate reduction on hydrocarbon composition in Nisku reservoirs, Brazeau river area, Alberta, Canada. Org. Geochem?1997, 27, 507–521, doi:10.1016/S0146-6380(97)00070-3.
[49]  Richard, L; Neuville, N; Sterpenich, J; Perfetti, E; Lacharpagne, J-Cl. Thermodynamic analysis of organic/inorganic reactions involving sulfur: Implications for the sequestration of H2S in carbonate reservoirs. Oil Gas Sci. Technol?2005, 60, 275–285, doi:10.2516/ogst:2005017.
[50]  Kettler, RM; Waldo, GS; Penner-Hahn, JE; Meyer, PA; Kesler, SE. Sulfidation of organic matter associated with gold mineralization, Pueblo Viejo, Dominican Republic. Appl. Geochem?1990, 5, 237–248, doi:10.1016/0883-2927(90)90051-6.
[51]  Xiao, J; Zhang, A. Discovery of thiopene-type compounds in Jinya gold deposit of Guangxi and its significance. Chin. Sci. Bull?1997, 42, 1009–1011, doi:10.1007/BF02882620.
[52]  Jordan, A. Natural Production of Organohalogen Compounds; Springer Berlin Heidelberg: New York, NY, USA, 2003; Volume 3, pp. 121–139.
[53]  Li, Q; Xu, Y; Liu, C; Kim, J. Catalytic synthesis of thiophene from reaction of furan and hydrogen sulphide. Catal Lett?2008, 122, 354–358, doi:10.1007/s10562-007-9389-x.
[54]  Rivers, TJ; Hudson, TW; Schmidt, CE. Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications. Adv. Funct. Mater?2002, 12, 33–37, doi:10.1002/1616-3028(20020101)12:1<33::AID-ADFM33>3.0.CO;2-E.
[55]  Southward, BWL; Fuller, LS; Huctchings, GJ; Joyner, R; Stewart, R. Comments on the mechanism of the vapor-phase catalytic synthesis of thiophenes. Catal. Lett?1998, 55, 207–210, doi:10.1023/A:1019082928758.
[56]  Tomov, A; Fajula, F; Moreau, C. Vapor-phase synthesis of thiophene from crotonaldehyde and carbon disulfide over promoted chromia on g-alumina catalysts. Appl. Catal. A?2000, 192, 71–79, doi:10.1016/S0926-860X(99)00336-1.
[57]  Campaigne, E; Foye, WO. The synthesis of 2,5 diarylthiophenes. J. Org. Chem?1952, 17, 1405–1412, doi:10.1021/jo50010a023.
[58]  Jursic, BS. Suitability of furan, pyrrole and thiophene as dienes for Diels-Alder reactions viewed through their stability and reactions barriers for reactions with acetylene, ethylene and cycloporpene. An AM1 semiempirical and B3LYP hybrid density functional theory study. J. Molecul. Struct?1998, 454, 105–116.
[59]  Angelini, G; Lilla, G; Speranza, M. Gas-phase heteroaromatic substitution. 3. Electrophilic methylation of furan and thiophene by CHXCH (X = fluoro, chloro) ions. J. Am. Chem. Soc?1982, 104, 7091–7098, doi:10.1021/ja00389a035.
[60]  Wojcik, BH. Catalytic hydrogenation of furan compounds. Ind. Eng. Chem?1948, 40, 210–216, doi:10.1021/ie50458a007.
[61]  Reddy, BM; Reddy, GK; Rao, KN; Khan, A; Ganesh, I. Silica supported transition metal-based bimetallic catalysts for vapor phase selective hydrogenation of furfualdehyde. J. Mol. Catalys. A: Chem?2007, 265, 276–282, doi:10.1016/j.molcata.2006.10.034.
[62]  Giggenbach, WF; Gougel, RL. Method for the Collection and Analysis of Geothermal and Volcanic Water and Gas Samples; New Zealand DSIR, 1989; pp. 1–53.
[63]  Montegrossi, G; Tassi, F; Vaselli, O; Buccianti, A; Garofalo, K. Sulfur species in volcanic gases. Anal. Chem?2001, 73, 3709–3715, doi:10.1021/ac001429b. 11510838
[64]  Vaselli, O; Tassi, F; Montegrossi, G; Capaccioni, B; Giannini, L. Sampling and analysis of volcanic gases. Acta Volcanol?2006, 18, 65–76.
[65]  Tassi, F; Buccianti, A; Capecchiacci, F; Vaselli, O; Montegrossi, G; Minissale, A. Metodo d'analisi e di riconoscimento dei composti organici volatili (COV) in gas vulcanici, idrotermali e del suolo; Florence, Italy, 2008; pp. 1–12.
[66]  Arthur, CL; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem?1990, 62, 2145–2148, doi:10.1021/ac00218a019.
[67]  Davoli, E; Gangai, ML; Morselli, L; Tonelli, D. Characterization of odorants emissions from landfills by SPME and GC/MS. Chemosphere?2003, 51, 357–368, doi:10.1016/S0045-6535(02)00845-7. 12598001
[68]  Mangani, G; Berloni, A; Maione, M. “Cold” solid-phase microextraction method for the determination of volatile halocarbons present in the atmosphere at ultra-trace levels. J. Chromatogr. A?2003, 988, 167–175, doi:10.1016/S0021-9673(02)02082-4. 12641154
[69]  Mangani, G; Berlani, A; Capaccioni, B; Tassi, F; Maione, M. Gas chromatographic-mass spectrometric analysis of hydrocarbons and other neutral organic compounds in volcanic gases using SPME for sample preparation. Chromatographia?2004, 58, 1–5.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133