Activated carbons were characterized texturally and chemically before and after treatment, using surface area determination in the BET model, Boehm titration, TPR, DRX and immersion calorimetry. The adsorption capacity and the kinetics of sulphur compound removal were determined by gas chromatography. It was established that the propanethiol retention capacity is dependent on the number of oxygenated groups generated on the activated carbon surface and that activated carbon modified with CuO at 0.25 M shows the highest retention of propanethiol. Additionally is proposed a mechanism of decomposition of propenothiol with carbon-copper system.
References
[1]
Tsai, CH; Lee, WJ; Chen, CY; Liao, WT. Decomposition of CH3SH in a RF plasma reactor: Reaction products and mechanisms. Ind. Eng. Chem. Res?2001, 40, 2384–2391, doi:10.1021/ie0009637.
[2]
Lee, JH; Tang, IN. Absolute rate constants for the hydroxyl radical reactions with CH3SH and C2H5SH at room temperature. J. Chem. Phys?1983, 78, 6646–6646, doi:10.1063/1.444663.
[3]
Lopez-Ramon, MV; Stoeckli, HF; Moreno-Castilla, C; Carrasco-Marin, F. On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon?1999, 37, 1215–1222, doi:10.1016/S0008-6223(98)00317-0.
[4]
Salame, II; Bandosz, TJ. Surface chemistry of activated carbons: Combining the results of temperature-programed desorption, Boehm, and potentiometric titrations. J .Colloid Interface Sci?2001, 240, 252–262, doi:10.1006/jcis.2001.7596. 11446808
[5]
Park, SJ; Kim, KD. Influence of anodic surface treatment of activated carbon on adsorption and ion exchange properties. J. Colloid Interface Sci?1999, 218, 331–339, doi:10.1006/jcis.1999.6387. 10489308
[6]
Bashkova, S; Bagreev, A; Bandosz, TJ. Effect of surface chracteristic on adsorption of methyl mercaptan on activated carbons. Ind. Eng. Chem. Res?2002, 41, 4346–4351, doi:10.1021/ie020137t.
[7]
Bagreev, A; Bashkova, S; Bandosz, TJ. Dual role of water in the process of methysl mercapthan on activated carbons. Langmuir?2002, 18, 8553–8559, doi:10.1021/la020583l.
[8]
Bashkova, S; Bagreev, A; Bandosz, TJ. Adsorption/oxidation of CH3SH on activated carbons containing nitrogen. Langmuir?2003, 19, 6115–6121, doi:10.1021/la0300030.
[9]
Bagreev, A; Menendez, JA; Dukhno, I; Tarasenko, Y; Bandosz, TJ. Oxidative adsorption of methyl mercapthan on nitrogen-enriched bituminous coal-based activation carbon. Carbon?2005, 195–202.
[10]
Mangun, CL; Benak, KR; Economy, J; Foster, KL. Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia. Carbon?2001, 39, 1809–1815, doi:10.1016/S0008-6223(00)00319-5.
[11]
Li, L; Quinlivan, PA; Knappe, DRU. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon?2002, 40, 2085–2093, doi:10.1016/S0008-6223(02)00069-6.
[12]
Wu, SH; Pendleton, P. Adsorption of anionic surfactant by activated carbon: Effect of surface chemistry, ionic strength, and hydrophobicity. J. Colloid Interface Sci?2001, 243, 306–312, doi:10.1006/jcis.2001.7905.
[13]
Pereira, MFR; Soares, SF; Orfao, JJM; Figueiredo, JL. Adsorption of dyes on activated carbons: Influence of surface chemical groups. Carbon?2003, 41, 811–819, doi:10.1016/S0008-6223(02)00406-2.
[14]
Tanada, S; Kawasaki, N; Nakamura, M; Araki, M; Isomura, M. Removal of formaldehyde by activated carbons containing amino groups. J. Colloid Interface Sci?1999, 214, 106–114, doi:10.1006/jcis.1999.6176. 10328902
[15]
Abe, M; Kawashima, K; Kozawa, K; Sakai, H; Kaneko, K. Amination of activated carbon and adsorption characteristics of its aminated surface. Langmuir?2000, 16, 5059–5064, doi:10.1021/la990976t.
[16]
Navarrete, L; Giraldo, L; Moreno, JC. Influencia de la química superficial en la entalpía de inmersión de carbones activados en soluciones acuosas de fenol y 4-nitro fenol. Revista Colombiana de Química?2006, 35, 215–221.
[17]
Tsoncheva, T; Linden, MS; Areva, S; Minchev, CC. Copper oxide modified large pore ordered mesoporous silicas for ethyl acetate combustion. Catal. Commun?2006, 7, 357–365, doi:10.1016/j.catcom.2005.12.001.
[18]
Sung, MN; Sung, K; Kim, CG; Lee, SS; Kim, Y. Reactivity of laser-prepared copper nanoparticles: Oxidation of thiols to disulfides. J. Phys. Chem. B?2002, 106, 9717–9722, doi:10.1021/jp0205822.
[19]
Keller, H; Simak, P; Schrepp, W. Surface chemistry of thiols on copper: An efficient way of producing multilayers. Thin Solid Films?1994, 244, 799–805, doi:10.1016/0040-6090(94)90574-6.
[20]
Sandhyarani, N; Pradeep, T. An investigation of the structure and properties of layered copper thiolates. J. Mater. Chem?2001, 11, 1294–1299, doi:10.1039/b009837j.
[21]
Bensebaa, F; Ellis, TH; Kruus, E; Voicu, R; Zhou, Y. The self-assembly of a layered material: Metal-alkanethiolate bilayers. Can. J. Chem?1998, 76, 1654–1659.
[22]
Turbeville, W; Yap, N. The chemistry of copper-containing sulfur adsorbents in the presence of mercaptans. Catal. Today?1999, 181, 519–525.
[23]
Moreno-Piraján, JC; Giraldo, L; Garcia, V; Sapag, K; Zgrablich, G. Design, calibration, and testing of a new Tian-Calvet heat-flow microcalorimeter for measurement of differential heats of adsorption. Instrum. Sci. Technol?2008, 36, 455–462, doi:10.1080/10739140802234899.