Fluorescence correlation spectroscopy (FCS) is a single molecule technique used mainly for determination of mobility and local concentration of molecules. This review describes the specific problems of FCS in planar systems and reviews the state of the art experimental approaches such as 2-focus, Z-scan or scanning FCS, which overcome most of the artefacts and limitations of standard FCS. We focus on diffusion measurements of lipids and proteins in planar lipid membranes and review the contributions of FCS to elucidating membrane dynamics and the factors influencing it, such as membrane composition, ionic strength, presence of membrane proteins or frictional coupling with solid support.
References
[1]
Magde, D; Elson, E; Webb, WW. Thermodynamic fluctuations in a reacting system–Measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett?1972, 29, 705–708.
[2]
Elson, E; Magde, D. Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers?1974, 13, 1–27.
[3]
Magde, D; Elson, E. Fluorescence correlation spectroscopy. II. an experimental realization. Biopolymers?1974, 13, 29–61.
[4]
Widengren, J; Rigler, R. Review-Fluorescence correlation spectroscopy as a tool to investigate chemical reactions in solutions and on cell surfaces. Cell. Mol. Biol?1998, 44, 857–879.
[5]
Magde, D. Chemical-kinetics and fluorescence correlation spectroscopy. Q. Rev. Biophys?1976, 9, 35–47.
[6]
Palmer, AG; Thompson, NL. Molecular aggregation characterized by high-order autocorrelation in fluorescence correlation spectroscopy. Biophys. J?1987, 52, 257–270.
[7]
Shi, XK; Foo, YH; Sudhaharan, T; Chong, SW; Korzh, V; Ahmed, S; Wohland, T. Determination of dissociation constants in living zebrafish embryos with single wavelength fluorescence cross-correlation spectroscopy. Biophys. J?2009, 97, 678–686.
[8]
Xiao, Y; Buschmann, V; Weston, KD. Scanning fluorescence correlation spectroscopy: A tool for probing microsecond dynamics of surface-bound fluorescent species. Anal. Chem?2005, 77, 36–46.
[9]
Yu, LL; Tan, MY; Ho, B; Ding, JL; Wohland, T. Determination of critical micelle concentrations and aggregation numbers by fluorescence correlation spectroscopy: Aggregation of a lipopolysaccharide. Anal. Chim. Acta?2006, 556, 216–225.
[10]
Ehrenberg, M; Rigler, R. Rotational Brownian-motion and fluorescence intensity fluctuations. Chem. Phys?1974, 4, 390–401.
[11]
Ye, F; Collinson, MM; Higgins, DA. Molecular orientation and its influence on autocorrelation amplitudes in single-molecule Imaging experiments. Anal. Chem?2007, 79, 6465–6472.
[12]
Humpolickova, J; Benda, A; Sykora, J; Machan, R; Kral, T; Gasinska, B; Enderlein, J; Hof, M. Equilibrium dynamics of spermine-induced plasmid DNA condensation revealed by fluorescence lifetime correlation spectroscopy. Biophys. J?2008, 94, L17–L19.
[13]
Widengren, J; Mets, U; Rigler, R. Fluorescence correlation spectroscopy of triplet-states in solution - A theoretical and experimental-study. J. Phys. Chem?1995, 99, 13368–13379.
[14]
Widengren, J; Schwille, P. Characterization of photoinduced isomerization and backisomerization of the cyanine dye Cy5 by fluorescence correlation spectroscopy. J. Phys. Chem. A?2000, 104, 6416–6428.
[15]
Widengren, J; Mets, U; Rigler, R. Photodynamic properties of green fluorescent proteins investigated by fluorescence correlation spectroscopy. Chem. Phys?1999, 250, 171–186.
[16]
Enderlein, J; Gregor, I; Patra, D; Fitter, J. Art and artefacts of fluorescence correlation spectroscopy. Curr. Pharm. Biotechnol?2004, 5, 155–161.
[17]
Enderlein, J; Gregor, I; Patra, D; Dertinger, T; Kaupp, UB. Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration. ChemPhysChem?2005, 6, 2324–2336.
Meyvis, TKL; De Smedt, SC; Van Oostveldt, P; Demeester, J. Fluorescence recovery after photobleaching: A versatile tool for mobility and interaction measurements in pharmaceutical research. Pharm. Res?1999, 16, 1153–1162.
[21]
Sprague, BL; McNally, JG. FRAP analysis of binding: proper and fitting. Trends Cell Biol?2005, 15, 84–91.
[22]
Benda, A; Benes, M; Marecek, V; Lhotsky, A; Hermens, WT; Hof, M. How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy. Langmuir?2003, 19, 4120–4126.
[23]
Milon, S; Hovius, R; Vogel, H; Wohland, T. Factors influencing fluorescence correlation spectroscopy measurements on membranes: simulations and experiments. Chem. Phys?2003, 288, 171–186.
[24]
Ries, J; Schwille, P. Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy. Biophys. J?2006, 91, 1915–1924.
[25]
Ries, J; Schwille, P. New concepts for fluorescence correlation spectroscopy on membranes. Phys. Chem. Chem. Phys?2008, 10, 3487–3497.
[26]
Ries, J; Chiantia, S; Schwille, P. Accurate determination of membrane dynamics with line-scan FCS. Biophys. J?2009, 96, 1999–2008.
[27]
Dertinger, T; Pacheco, V; von der Hocht, I; Hartmann, R; Gregor, I; Enderlein, J. Two-focus fluorescence correlation spectroscopy: A new tool for accurate and absolute diffusion measurements. ChemPhysChem?2007, 8, 433–443.
[28]
Gielen, E; Smisdom, N; vandeVen, M; De Clercq, B; Gratton, E; Digman, M; Rigo, JM; Hofkens, J; Engelborghs, Y; Ameloot, M. Measuring diffusion of lipid-like probes in artificial and natural membranes by Raster Image Correlation Spectroscopy (RICS): Use of a commercial laser-scanning microscope with analog detection. Langmuir?2009, 25, 5209–5218.
Hohlbein, J; Steinhart, M; Schiene-Fischer, C; Benda, A; Hof, M; Hubner, CG. Confined diffusion in ordered nanoporous alumina membranes. Small?2007, 3, 380–385.
[31]
Pieper, T; Markova, S; Kinjo, M; Suter, D. Effect of cholesterol on diffusion in surfactant bilayers. J Chem Phys?2007, 127, 165102:1–165102:7.
[32]
Donsmark, J; Rischel, C. Fluorescence correlation spectroscopy at the oil-water interface: Hard disk diffusion behavior in dilute beta-lactoglobulin layers precedes monolayer formation. Langmuir?2007, 23, 6614–6623.
[33]
Sukhishvili, SA; Chen, Y; Muller, JD; Gratton, E; Schweizer, KS; Granick, S. Surface diffusion of poly(ethylene glycol). Macromolecules?2002, 35, 1776–1784.
[34]
Lingwood, D; Ries, J; Schwille, P; Simons, K. Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc. Natl. Acad. Sci. USA?2008, 105, 10005–10010.
[35]
Ohsugi, Y; Kinjo, M. Multipoint fluorescence correlation spectroscopy with total internal reflection fluorescence microscope. J. Biomed. Opt?2009, 14, 4.
[36]
Owen, DM; Williamson, D; Rentero, C; Gaus, K. Quantitative microscopy: Protein dynamics and membrane organisation. Traffic?2009, 10, 962–971.
[37]
Marguet, D; Lenne, PF; Rigneault, H; He, HT. Dynamics in the plasma membrane: how to combine fluidity and order. EMBO J?2006, 25, 3446–3457.
[38]
Vigh, L; Escriba, PV; Sonnleitner, A; Sonnleitner, M; Piotto, S; Maresca, B; Horvath, I; Harwood, JL. The significance of lipid composition for membrane activity: New concepts and ways of assessing function. Prog. Lipid Res?2005, 44, 303–344.
[39]
Schwille, P; Diez, S. Synthetic biology of minimal systems. Crit. Rev. Biochem. Mol. Biol?2009, 44, 223–242.
[40]
Singer, SJ; Nicolson, GL. Fluid mosaic model of structure of cell-membranes. Science?1972, 175, 720–721.
[41]
Simons, K; Ikonen, E. Functional rafts in cell membranes. Nature?1997, 387, 569–572.
[42]
Thompson, TE; Tillack, TW. Organization of glycosphingolipids in bilayers and plasmamembranes of mammalian-cells. Annu. Rev. Biophys. Biophys. Chem?1985, 14, 361–386.
[43]
Sharma, P; Varma, R; Sarasij, RC; Ira; Gousset, K; Krishnamoorthy, G; Rao, M; Mayor, S. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell?2004, 116, 577–589.
[44]
Vereb, G; Szollosi, J; Matko, J; Nagy, P; Farkas, T; Vigh, L; Matyus, L; Waldmann, TA; Damjanovich, S. Dynamic, yet structured: The cell membrane three decades after the Singer-Nicolson model. Proc. Natl. Acad. Sci. USA?2003, 100, 8053–8058.
[45]
Falck, E; Patra, M; Karttunen, M; Hyvonen, MT; Vattulainen, I. Lessons of slicing membranes: Interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers. Biophys. J?2004, 87, 1076–1091.
[46]
Gullapalli, RR; Demirel, MC; Butler, PJ. Molecular dynamics simulations of DiI-C-18(3) in a DPPC lipid bilayer. Phys. Chem. Chem. Phys?2008, 10, 3548–3560.
[47]
Vacha, R; Siu, SWI; Petrov, M; Bockmann, RA; Barucha-Kraszewska, J; Jurkiewicz, P; Hof, M; Berkowitz, ML; Jungwirth, P. Effects of Alkali Cations and Halide Anions on the DOPC Lipid Membrane. J. Phys. Chem. A?2009, 113, 7235–7243.
[48]
Ratto, TV; Longo, ML. Obstructed diffusion in phase-separated supported lipid bilayers: A combined atomic force microscopy and fluorescence recovery after photobleaching approach. Biophys. J?2002, 83, 3380–3392.
[49]
Kusumi, A; Sako, Y; Yamamoto, M. Confined lateral diffusion of membrane-receptors as studied by single-particle tracking (nanovid microscopy) - Effects of calcium-induced differentiation in cultured epithelial-cells. Biophys. J?1993, 65, 2021–2040.
[50]
Dietrich, C; Yang, B; Fujiwara, T; Kusumi, A; Jacobson, K. Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys. J?2002, 82, 274–284.
[51]
Benes, M; Billy, D; Hermens, WT; Hof, M. Muscovite (mica) allows the characterisation of supported Bilayers by ellipsometry and confocal fluorescence correlation spectroscopy. Biol. Chem?2002, 383, 337–341.
[52]
Steinem, C; Janshoff, A; Ulrich, WP; Sieber, M; Galla, HJ. Impedance analysis of supported lipid bilayer membranes: A scrutiny of different preparation techniques. Biochim. Biophys. Acta—Biomembr?1996, 1279, 169–180.
[53]
Sharonov, A; Bandichhor, R; Burgess, K; Petrescu, AD; Schroeder, F; Kier, AB; Hochstrasser, RM. Lipid diffusion from single molecules of a labeled protein undergoing dynamic association with giant unilamellar vesicles and supported bilayers. Langmuir?2008, 24, 844–850.
[54]
Reeves, JP; Dowben, RM. Formation and properties of thin-walled phospholipid vesicles. J. Cell. Physiol?1969, 73, 49–60.
Bagatolli, LA; Parasassi, T; Gratton, E. Giant phospholipid vesicles: comparison among the whole lipid sample characteristics using different preparation methods—A two photon fluorescence microscopy study. Chem. Phys. Lipids?2000, 105, 135–147.
[57]
Boxer, SG. Molecular transport and organization in supported lipid membranes. Curr. Opin. Chem. Biol?2000, 4, 704–709.
[58]
Sackmann, E. Supported membranes: Scientific and practical applications. Science?1996, 271, 43–48.
Dietrich, C; Bagatolli, LA; Volovyk, ZN; Thompson, NL; Levi, M; Jacobson, K; Gratton, E. Lipid rafts reconstituted in model membranes. Biophys. J?2001, 80, 1417–1428.
[61]
Kahya, N; Scherfeld, D; Bacia, K; Schwille, P. Lipid domain formation and dynamics in giant unilamellar vesicles explored by fluorescence correlation spectroscopy. J. Struct. Biol?2004, 147, 77–89.
[62]
Lee, CC; Petersen, NO. The lateral diffusion of selectively aggregated peptides in giant unilamellar vesicles. Biophys. J?2003, 84, 1756–1764.
[63]
Wahl, M; Gregor, I; Patting, M; Enderlein, J. Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting. Opt. Express?2003, 11, 3583–3591.
[64]
Hess, ST; Huang, SH; Heikal, AA; Webb, WW. Biological and chemical applications of fluorescence correlation spectroscopy: A review. Biochemistry?2002, 41, 697–705.
[65]
Thompson, NL. Fluorescence correlation spectroscopy. In Topics in Fluorescence Spectroscopy; Lakowicz, JR, Ed.; Plenum Press: New York, NY, USA, 1991; Volume 1, pp. 337–378.
[66]
Yu, L; Ding, JL; Ho, B; Wohland, T. Investigation of a novel artificial antimicrobial peptide by fluorescence correlation spectroscopy: An amphipathic cationic pattern is sufficient for selective binding to bacterial type membranes and antimicrobial activity. Biochim. Biophys. Acta—Biomembr?2005, 1716, 29–39.
[67]
Schwille, P; Oehlenschlager, F; Walter, NG. Quantitative hybridization kinetics of DNA probes to RNA in solution followed by diffusional fluorescence correlation analysis. Biochemistry?1996, 35, 10182–10193.
[68]
Zhang, LF; Granick, S. Interleaflet diffusion coupling when polymer adsorbs onto one sole leaflet of a supported phospholipid bilayer. Macromolecules?2007, 40, 1366–1368.
[69]
Donsmark, J; Jorgensen, L; Mollmann, S; Frokjaer, S; Rischel, C. Kinetics of insulin adsorption at the oil-water interface and diffusion properties of adsorbed layers monitored using fluorescence correlation spectroscopy. Pharm. Res?2006, 23, 148–155.
[70]
Provencher, SW. A constrained regularization method for inverting data represented by linear algebraic or integral-Equations. Comput. Phys. Commun?1982, 27, 213–227.
[71]
Enderlein, J; Gregor, I; Patra, D; Fitter, J. Statistical analysis of diffusion coefficient determination by fluorescence correlation spectroscopy. J. Fluoresc?2005, 15, 415–422.
[72]
Koppel, DE. Statistical accuracy in fluorescence correlation spectroscopy. Phys. Rev. A?1974, 10, 1938–1945.
[73]
Qian, H. On the statistics of fluorescence correlation spectroscopy. Biophys. Chem?1990, 38, 49–57.
[74]
Wohland, T; Rigler, R; Vogel, H. The standard deviation in fluorescence correlation spectroscopy. Biophys. J?2001, 80, 2987–2999.
[75]
Kask, P; Gunther, R; Axhausen, P. Statistical accuracy in fluorescence fluctuation experiments. Eur. Biophys. J. Biophys. Lett?1997, 25, 163–169.
Guo, L; Har, JY; Sankaran, J; Hong, YM; Kannan, B; Wohland, T. Molecular diffusion measurement in lipid bilayers over wide concentration ranges: A comparative study. ChemPhysChem?2008, 9, 721–728.
[78]
Wenger, J; Rigneault, H; Dintinger, J; Marguet, D; Lenne, PF. Single-fluorophore diffusion in a lipid membrane over a subwavelength aperture. J Biol Phys?2006, 32, SN1–SN4.
[79]
Samiee, KT; Moran-Mirabal, JM; Cheung, YK; Craighead, HG. Zero mode waveguides for single-molecule spectroscopy on lipid membranes. Biophys. J?2006, 90, 3288–3299.
[80]
Blom, H; Kastrup, L; Eggeling, C. Fluorescence fluctuation spectroscopy in reduced detection volumes. Curr. Pharm. Biotechnol?2006, 7, 51–66.
[81]
Eggeling, C; Ringemann, C; Medda, R; Schwarzmann, G; Sandhoff, K; Polyakova, S; Belov, VN; Hein, B; von Middendorff, C; Schonle, A; Hell, SW. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature?2009, 457, 1159–1162.
[82]
Gregor, I; Patra, D; Enderlein, J. Optical saturation in fluorescence correlation spectroscopy under continuous-wave and pulsed excitation. ChemPhysChem?2005, 6, 164–170.
[83]
Petrá?ek, Z; Schwille, P. Photobleaching in two-photon scanning fluorescence correlation spectroscopy. ChemPhysChem?2008, 9, 147–158.
[84]
Widengren, J; Rigler, R. Mechanism of photobleaching investigated by fluorescence correlation spectroscopy. Bioimaging?1996, 4, 149–157.
[85]
Satsoura, D; Leber, B; Andrews, DW; Fradin, C. Circumvention of fluorophore photobleaching in fluorescence fluctuation experiments: A beam scanning approach. ChemPhysChem?2007, 8, 834–848.
[86]
Petersen, NO. Diffusion and aggregation in biological-membranes. Can. J. Biochem. Cell. B?1984, 62, 1158–1166.
[87]
Schwille, P; Korlach, J; Webb, WW. Fluorescence correlation spectroscopy with singlemolecule sensitivity on cell and model membranes. Cytometry?1999, 36, 176–182.
[88]
Dittrich, PS; Schwille, P. Photobleaching and stabilization of fluorophores used for singlemolecule analysis with one- and two-photon excitation. Appl. Phys. B: Lasers Opt?2001, 73, 829–837.
[89]
Zipfel, WR; Williams, RM; Webb, WW. Nonlinear magic: Multiphoton microscopy in the biosciences. Nat. Biotechnol?2003, 21, 1368–1376.
[90]
Mutze, J; Petrasek, Z; Schwille, P. Independence of maximum single molecule fluorescence count rate on the temporal and spectral laser pulse width in two-photon FCS. J. Fluoresc?2007, 17, 805–810.
[91]
Petrasek, Z; Schwille, P. Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys. J?2008, 94, 1437–1448.
[92]
Petersen, NO. Scanning fluorescence correlation spectroscopy. 1. Theory and simulation of aggregation measurements. Biophys. J?1986, 49, 809–815.
[93]
Hebert, B; Costantino, S; Wiseman, PW. Spatiotemporal image correlation Spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. Biophys. J?2005, 88, 3601–3614.
[94]
Chiantia, S; Ries, J; Schwille, P. Fluorescence correlation spectroscopy in membrane structure elucidation. Biochim. Biophys. Acta—Biomembr?2009, 1788, 225–233.
[95]
Garcia-Saez, AJ; Schwille, P. Fluorescence correlation spectroscopy for the study of membrane dynamics and protein/lipid interactions. Methods?2008, 46, 116–122.
[96]
Hess, ST; Webb, WW. Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys. J?2002, 83, 2300–2317.
[97]
Chiantia, S; Ries, J; Kahya, N; Schwille, P. Combined AFM and two-focus SFCS study of raftexhibiting model membranes. ChemPhysChem?2006, 7, 2409–2418.
[98]
Hansen, RL; Zhu, XR; Harris, JM. Fluorescence correlation spectroscopy with patterned photoexcitation for measuring solution diffusion coefficients of robust fluorophores. Anal. Chem?1998, 70, 1281–1287.
[99]
Kannan, B; Har, JY; Liu, P; Maruyama, I; Ding, JL; Wohland, T. Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy. Anal. Chem?2006, 78, 3444–3451.
[100]
Dertinger, T; von der Hocht, I; Benda, A; Hof, M; Enderlein, J. Surface sticking and lateral diffusion of lipids in supported bilayers. Langmuir?2006, 22, 9339–9344.
[101]
Didier, P; Godet, J; Mely, Y. Two-photon two-focus fluorescence correlation spectroscopy with a tunable distance between the excitation volumes. J. Fluoresc?2009, 19, 561–565.
[102]
Brinkmeier, M; Dorre, K; Stephan, J; Eigen, M. Two beam cross correlation: A method to characterize transport phenomena in micrometer-sized structures. Anal. Chem?1999, 71, 609–616.
[103]
Burkhardt, M; Schwille, P. Electron multiplying CCD based detection for spatially resolved fluorescence correlation spectroscopy. Opt. Express?2006, 14, 5013–5020.
[104]
Kannan, B; Guo, L; Sudhaharan, T; Ahmed, S; Maruyama, I; Wohland, T. Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera. Anal. Chem?2007, 79, 4463–4470.
[105]
Sankaran, J; Manna, M; Guo, L; Kraut, R; Wohland, T. Diffusion, transport, and cell membrane organization investigated by imaging fluorescence cross-correlation spectroscopy. Biophys. J?2009, 97, 2630–2639.
[106]
Sorscher, SM; Klein, MP. Profile of a focused collimated laser-beam near the focal minimum characterized by fluorescence correlation spectroscopy. Rev. Sci. Instrum?1980, 51, 98–102.
[107]
Przybylo, M; Sykora, J; Humpolickova, J; Benda, A; Zan, A; Hof, M. Lipid diffusion in giant unilamellar vesicles is more than 2 times faster than in supported phospholipid bilayers under identical conditions. Langmuir?2006, 22, 9096–9099.
[108]
Skinner, JP; Chen, Y; Muller, JD. Fluorescence fluctuation spectroscopy in the presence of immobile fluorophores. Biophys. J?2008, 94, 2349–2360.
[109]
Kolin, DL; Ronis, D; Wiseman, PW. k-Space image correlation spectroscopy: A method for accurate transport measurements independent of fluorophore photophysics. Biophys. J?2006, 91, 3061–3075.
[110]
Gielen, E; Smisdom, N; De Clercq, B; Vandeven, M; Gijsbers, R; Debyser, Z; Rigo, JM; Hofkens, J; Engelborghs, Y; Ameloot, M. Diffusion of myelin oligodendrocyte glycoprotein in living OLN-93 cells investigated by raster-scanning image correlation spectroscopy (RICS). J. Fluoresc?2008, 18, 813–819.
[111]
Petersen, NO; Johnson, DC; Schlesinger, MJ. Scanning fluorescence correlation spectroscopy. 2. Application to virus glycoprotein aggregation. Biophys. J?1986, 49, 817–820.
Petersen, NO; Hoddelius, PL; Wiseman, PW; Seger, O; Magnusson, KE. Quantitation of membrane-receptor distributions by image correlation spectroscopy-Concept and application. Biophys. J?1993, 65, 1135–1146.
[114]
Digman, MA; Brown, CM; Sengupta, P; Wiseman, PW; Horwitz, AR; Gratton, E. Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys. J?2005, 89, 1317–1327.
[115]
Digman, MA; Sengupta, P; Wiseman, PW; Brown, CM; Horwitz, AR; Gratton, E. Fluctuation correlation spectroscopy with a laser-scanning microscope: Exploiting the hidden time structure. Biophys. J?2005, 88, L33–L36.
[116]
?tefl, M; Kulakowska, A; Hof, M. Simultaneous characterization of lateral lipid and prothrombin diffusion coefficients by z-scan fluorescence correlation spectroscopy. Biophys. J?2009, 97, L1–L3.
[117]
Benda, A; Fagul’ova, V; Deyneka, A; Enderlein, J; Hof, M. Fluorescence lifetime correlation spectroscopy combined with lifetime tuning: New perspectives in supported phospholipid bilayer research. Langmuir?2006, 22, 9580–9585.
[118]
Bohmer, M; Wahl, M; Rahn, HJ; Erdmann, R; Enderlein, J. Time-resolved fluorescence correlation spectroscopy. Chem. Phys. Lett?2002, 353, 439–445.
[119]
Kapusta, P; Wahl, M; Benda, A; Hof, M; Enderlein, J. Fluorescence lifetime correlation spectroscopy. J. Fluoresc?2007, 17, 43–48.
[120]
Enderlein, J; Gregor, I. Using fluorescence lifetime for discriminating detector afterpulsing in fluorescence-correlation spectroscopy. Rev Sci Instrum?2005, 76, 033102:1–033102:5.
[121]
Humpolickova, J; Beranova, L; Stepanek, M; Benda, A; Prochazka, K; Hof, M. Fluorescence lifetime correlation spectroscopy reveals compaction mechanism of 10 and 49 kbp dna and differences between polycation and cationic surfactant. J. Phys. Chem. B?2008, 112, 16823–16829.
[122]
Perez-Luna, VH; Yang, SP; Rabinovich, EM; Buranda, T; Sklar, LA; Hampton, PD; Lopez, GP. Fluorescence biosensing strategy based on energy transfer between fluorescently labeled receptors and a metallic surface. Biosens. Bioelectron?2002, 17, 71–78.
[123]
Zhang, XL; Chen, LG; Lv, P; Gao, HY; Wei, SJ; Dong, ZC; Hou, JG. Fluorescence decay of quasimonolayered porphyrins near a metal surface separated by short-chain alkanethiols. Appl Phys Lett?2008, 92, 223118:1–223118:3.
[124]
Kittredge, KW; Fox, MA; Whitesell, JK. Effect of alkyl chain length on the fluorescence of 9-alkylfluorenyl thiols as self-assembled monolayers on gold. J. Phys. Chem. B?2001, 105, 10594–10599.
[125]
Ries, J; Petrov, EP; Schwille, P. Total internal reflection fluorescence correlation spectroscopy: Effects of lateral diffusion and surface-generated fluorescence. Biophys. J?2008, 95, 390–399.
[126]
Thompson, NL; Pearce, KH; Hsieh, HV. Total internal-reflection fluorescence microscopy—Application to substrate-supported planar membranes. Eur. Biophys. J. Biophys. Lett?1993, 22, 367–378.
Saxton, MJ. Lateral diffusion in an archipelago-Distance dependence of the diffusion-coefficient. Biophys. J?1989, 56, 615–622.
[135]
Schwille, P; Korlach, J; Webb, WW. Anomalous subdiffusion of proteins and lipids in membranes observed by fluorescence correlation spectroscopy. Biophys. J?1999, 76, A391.
[136]
Schutz, GJ; Schindler, H; Schmidt, T. Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys. J?1997, 73, 1073–1080.
[137]
Weiss, M; Hashimoto, H; Nilsson, T. Anomalous protein diffusion in living cells as seen by fluorescence correlation spectroscopy. Biophys. J?2003, 84, 4043–4052.
[138]
Saxton, MJ. Anomalous diffusion due to obstacles-A Monte-Carlo study. Biophys. J?1994, 66, 394–401.
[139]
Saxton, MJ. Anomalous diffusion due to binding: A Monte Carlo study. Biophys. J?1996, 70, 1250–1262.
[140]
Saxton, MJ. Anomalous subdiffusion in fluorescence photobleaching recovery: A Monte Carlo study. Biophys. J?2001, 81, 2226–2240.
[141]
Saxton, MJ. A biological interpretation of transient anomalous subdiffusion. I. Qualitative model. Biophys. J?2007, 92, 1178–1191.
Vats, K; Kyoung, M; Sheets, ED. Characterizing the chemical complexity of patterned biomimetic membranes. Biochim. Biophys. Acta-Biomembr?2008, 1778, 2461–2468.
[144]
Sisan, DR; Arevalo, R; Graves, C; McAllister, R; Urbach, JS. Spatially resolved fluorescence correlation spectroscopy using a spinning disk confocal microscope. Biophys. J?2006, 91, 4241–4252.
[145]
Saxton, MJ. Single-particle tracking—Effects of corrals. Biophys. J?1995, 69, 389–398.
[146]
Deverall, MA; Gindl, E; Sinner, EK; Besir, H; Ruehe, J; Saxton, MJ; Naumann, CA. Membrane lateral mobility obstructed by polymer-tethered lipids studied at the single molecule level. Biophys. J?2005, 88, 1875–1886.
[147]
Saxton, MJ. Lateral diffusion in a mixture of mobile and immobile particles - A Monte-Carlo study. Biophys. J?1990, 58, 1303–1306.
[148]
Destainville, N. Theory of fluorescence correlation spectroscopy at variable observation area for two-dimensional diffusion on a meshgrid. Soft Mat?2008, 4, 1288–1301.
[149]
Humpolickova, J; Gielen, E; Benda, A; Fagulova, V; Vercammen, J; Vandeven, M; Hof, M; Ameloot, M; Engelborghs, Y. Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy. Biophys. J?2006, 91, L23–L25.
[150]
Almeida, PFF; Vaz, WLC; Thompson, TE. Lateral diffusion in the liquid-phases of dimyristoylphosphatidylcholine cholesterol lipid bilayers - A free-volume analysis. Biochemistry?1992, 31, 6739–6747.
[151]
Vaz, WLC; Clegg, RM; Hallmann, D. Translational diffusion of lipids in liquid-crystalline phase phosphatidylcholine multibilayers-A comparison of experiment with theory. Biochemistry?1985, 24, 781–786.
[152]
Vaz, WLC; Goodsaid-Zalduondo, F; Jacobson, K. Lateral diffusion of lipids and proteins in bilayer-membranes. FEBS Lett?1984, 174, 199–207.
[153]
Kahya, N; Schwille, P. How phospholipid-cholesterol interactions modulate lipid lateral diffusion, as revealed by fluorescence correlation spectroscopy. J. Fluoresc?2006, 16, 671–678.
[154]
Klymchenko, AS; Duportail, G; Demchenko, AP; Mely, Y. Bimodal distribution and fluorescence response of environment-sensitive probes in lipid bilayers. Biophys. J?2004, 86, 2929–2941.
[155]
Burns, AR; Frankel, DJ; Buranda, T. Local mobility in lipid domains of supported bilayers characterized by atomic force microscopy and fluorescence correlation spectroscopy. Biophys. J?2005, 89, 1081–1093.
[156]
Saffman, PG; Delbruck, M. Brownian motion in biological membranes. Proc. Natl. Acad. Sci. USA?1975, 72, 3111–3113.
[157]
Petrov, EP; Schwille, P. Translational diffusion in lipid membranes beyond the Saffman-Delbruck approximation. Biophys. J?2008, 94, L41–L43.
[158]
Ramadurai, S; Holt, A; Krasnikov, V; van den Bogaart, G; Killian, JA; Poolman, B. Lateral diffusion of membrane proteins. J. Am. Chem. Soc?2009, 131, 12650–12656.
[159]
Gambin, Y; Lopez-Esparza, R; Reffay, M; Sierecki, E; Gov, NS; Genest, M; Hodges, RS; Urbach, W. Lateral mobility of proteins in liquid membranes revisited. Proc. Natl. Acad. Sci. USA?2006, 103, 2098–2102.
[160]
Guigas, G; Weiss, M. Size-dependent diffusion of membrane inclusions. Biophys. J?2006, 91, 2393–2398.
[161]
Paulick, MG; Wise, AR; Forstner, MB; Groves, JT; Bertozzi, CR. Synthetic analogues of glycosylphosphatidylinositol-anchored proteins and their behavior in supported lipid bilayers. J. Am. Chem. Soc?2007, 129, 11543–11550.
[162]
Golebiewska, U; Gambhir, A; Hangyas-Mihalyne, G; Zaitseva, I; Radler, J; McLaughlin, S. Membrane-bound basic peptides sequester multivalent (PIP2), but not monovalent (PS), acidic lipids. Biophys. J?2006, 91, 588–599.
[163]
Saxton, MJ. Lateral diffusion in an archipelago-The effect of mobile obstacles. Biophys. J?1987, 52, 989–997.
[164]
Pearce, KH; Hof, M; Lentz, BR; Thompson, NL. Comparison of the membrane-binding kinetics of bovine prothrombin and its fragment-1. J. Biol. Chem?1993, 268, 22984–22991.
[165]
Forstner, MB; Yee, CK; Parikh, AN; Groves, JT. Lipid lateral mobility and membrane phase structure modulation by protein binding. J. Am. Chem. Soc?2006, 128, 15221–15227.
[166]
Blondelle, SE; Lohner, K; Aguilar, MI. Lipid-induced conformation and lipid-binding properties of cytolytic and antimicrobial peptides: determination and biological specificity. Biochim. Biophys. Acta-Biomembr?1999, 1462, 89–108.
[167]
Bechinger, B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim. Biophys. Acta-Biomembr?1999, 1462, 157–183.
[168]
Ambroggio, EE; Separovic, F; Bowie, JH; Fidelio, GD; Bagatolli, LA. Direct visualization of membrane leakage induced by the antibiotic peptides: Maculatin, citropin, and aurein. Biophys. J?2005, 89, 1874–1881.
[169]
Sheynis, T; Sykora, J; Benda, A; Kolusheva, S; Hof, M; Jelinek, R. Bilayer localization of membrane-active peptides studied in biomimetic vesicles by visible and fluorescence spectroscopies. Eur. J. Biochem?2003, 270, 4478–4487.
[170]
Macháň, R; Miszta, A; Hermens, W; Hof, M. Real-time monitoring of melittin induced pore and tubule formation from supported lipid bilayers and its physiological relevance. Chem Phys Lipids?2009.
[171]
Miszta, A; Machan, R; Benda, A; Ouellette, AJ; Hermens, WT; Hof, M. Combination of ellipsometry, laser scanning microscopy and Z-scan fluorescence correlation spectroscopy elucidating interaction of cryptdin-4 with supported phospholipid bilayers. J. Pept. Sci?2008, 14, 503–509.
[172]
Fahey, PF; Webb, WW. Lateral diffusion in phospholipid bilayer membranes and multilamellar liquid-crystals. Biochemistry?1978, 17, 3046–3053.
[173]
Montes, LR; Alonso, A; Goni, FM; Bagatolli, LA. Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. Biophys. J?2007, 93, 3548–3554.
[174]
Chiantia, S; Kahya, N; Ries, J; Schwille, P. Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS. Biophys. J?2006, 90, 4500–4508.
[175]
Benes, M; Billy, D; Benda, A; Speijer, H; Hof, M; Hermens, WT. Surface-dependent transitions during self-assembly of phospholipid membranes on mica, silica, and glass. Langmuir?2004, 20, 10129–10137.
[176]
Richter, RP; Berat, R; Brisson, AR. Formation of solid-supported lipid bilayers: An integrated view. Langmuir?2006, 22, 3497–3505.
[177]
Stelzle, M; Weissmuller, G; Sackmann, E. On the application of supported bilayers as receptive layers for biosensors with electrical detection. J. Phys. Chem?1993, 97, 2974–2981.
[178]
Cha, T; Guo, A; Zhu, XY. Formation of supported phospholipid bilayers on molecular surfaces: Role of surface charge density and electrostatic interaction. Biophys. J?2006, 90, 1270–1274.
[179]
Richter, R; Mukhopadhyay, A; Brisson, A. Pathways of lipid vesicle deposition on solid surfaces: A combined QCM-D and AFM study. Biophys. J?2003, 85, 3035–3047.
[180]
Spinke, J; Yang, J; Wolf, H; Liley, M; Ringsdorf, H; Knoll, W. Polymer-supported bilayer on a solid substrate. Biophys. J?1992, 63, 1667–1671.
[181]
Wright, LL; Palmer, AG; Thompson, NL. Inhomogeneous translational diffusion of monoclonal-antibodies on phospholipid Langmuir-Blodgett films. Biophys. J?1988, 54, 463–470.
[182]
Stelzle, M; Sackmann, E. Sensitive Detection of Protein Adsorption to Supported Lipid Bilayers by Frequency-Dependent Capacitance Measurements and Microelectrophoresis. Biochim. Biophys. Acta?1989, 981, 135–142.
[183]
Bayerl, TM; Thomas, RK; Penfold, J; Rennie, A; Sackmann, E. Specular reflection of neutrons at phospholipid monolayers - changes of monolayer structure and headgroup hydration at the transition from the expanded to the condensed phase state. Biophys. J?1990, 57, 1095–1098.
[184]
Johnson, SJ; Bayerl, TM; Mcdermott, DC; Adam, GW; Rennie, AR; Thomas, RK; Sackmann, E. Structure of an Adsorbed Dimyristoylphosphatidylcholine Bilayer Measured with Specular Reflection of Neutrons. Biophys. J?1991, 59, 289–294.
[185]
Hetzer, M; Heinz, S; Grage, S; Bayerl, TM. Asymmetric molecular friction in supported phospholipid bilayers revealed by NMR measurements of lipid diffusion. Langmuir?1998, 14, 982–984.
[186]
Korlach, J; Schwille, P; Webb, WW; Feigenson, GW. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. USA?1999, 96, 8461–8466.
[187]
Zhang, LF; Granick, S. Slaved diffusion in phospholipid bilayers. Proc. Natl. Acad. Sci. USA?2005, 102, 9118–9121.
[188]
Kahya, N; Scherfeld, D; Bacia, K; Poolman, B; Schwille, P. Probing lipid mobility of raftexhibiting model membranes by fluorescence correlation spectroscopy. J. Biol. Chem?2003, 278, 28109–28115.
[189]
Bockmann, RA; Hac, A; Heimburg, T; Grubmuller, H. Effect of sodium chloride on a lipid bilayer. Biophys. J?2003, 85, 1647–1655.
[190]
Doeven, MK; Folgering, JHA; Krasnikov, V; Geertsma, ER; van den Bogaart, G; Poolman, B. Distribution, lateral mobility and function of membrane proteins incorporated into giant unilamellar vesicles. Biophys. J?2005, 88, 1134–1142.
[191]
Bacia, K; Scherfeld, D; Kahya, N; Schwille, P. Fluorescence correlation spectroscopy relates rafts in model and native membranes. Biophys. J?2004, 87, 1034–1043.
[192]
Sum, AK; Faller, R; de Pablo, JJ. Molecular simulation study of phospholipid bilayers and insights of the interactions with disaccharides. Biophys. J?2003, 85, 2830–2844.
[193]
van den Bogaart, G; Hermans, N; Krasnikov, V; de Vries, AH; Poolman, B. On the decrease in lateral mobility of phospholipids by sugars. Biophys. J?2007, 92, 1598–1605.
[194]
Sackmann, E; Tanaka, M. Supported membranes on soft polymer cushions: fabrication, characterization and applications. Trends Biotechnol?2000, 18, 58–64.
[195]
Renner, L; Osaki, T; Chiantia, S; Schwille, P; Pompe, T; Werner, C. Supported lipid bilayers on spacious and pH-responsive polymer cushions with varied hydrophilicity. J. Phys. Chem. B?2008, 112, 6373–6378.
[196]
Ma, C; Srinivasan, MP; Waring, AJ; Lehrer, RI; Longo, ML; Stroeve, P. Supported lipid bilayers lifted from the substrate by layer-by-layer polyion cushions on self-assembled monolayers. Colloid Surf. B: Biointerfaces?2003, 28, 319–329.
[197]
Rossi, C; Briand, E; Parot, P; Odorico, M; Chopineau, J. Surface response methodology for the study of supported membrane formation. J. Phys. Chem. B?2007, 111, 7567–7576.
[198]
Deverall, MA; Garg, S; Ludtke, K; Jordan, R; Ruhe, J; Naumann, CA. Transbilayer coupling of obstructed lipid diffusion in polymer-tethered phospholipid bilayers. Soft Matt?2008, 4, 1899–1908.
[199]
Wagner, ML; Tamm, LK. Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: Silane-polyethyleneglycol-lipid as a cushion and covalent linker. Biophys. J?2000, 79, 1400–1414.
[200]
Kiessling, V; Crane, JM; Tamm, LK. Transbilayer effects of raft-like lipid domains in asymmetric planar bilayers measured by single molecule tracking. Biophys. J?2006, 91, 3313–3326.
[201]
Leutenegger, M; Lasser, T; Sinner, EK; Robelek, R. Imaging of G protein-coupled receptors in solid-supported planar lipid membranes. Biointerphases?2008, 3, FA136–FA145.
[202]
Horner, A; Antonenko, YN; Pohl, P. Coupled diffusion of peripherally bound peptides along the outer and inner membrane leaflets. Biophys. J?2009, 96, 2689–2695.
[203]
Devaux, PF. Static and dynamic lipid asymmetry in cell-membranes. Biochemistry?1991, 30, 1163–1173.
[204]
Bretsche, M. Asymmetrical lipid bilayer structure for biological membranes. Nat. New Biol?1972, 236, 11–12.
[205]
Meseth, U; Wohland, T; Rigler, R; Vogel, H. Resolution of fluorescence correlation measurements. Biophys. J?1999, 76, 1619–1631.
[206]
Zhang, LF; Granick, S. Lipid diffusion compared in outer and inner leaflets of planar supported bilayers. J Chem Phys?2005, 123, 211104:1–211104:4.
[207]
Ries, J; Yu, SR; Burkhardt, M; Brand, M; Schwille, P. Modular scanning FCS quantifies receptor-ligand interactions in living multicellular organisms. Nat. Methods?2009, 6, U643–U645.