Collagens, or more precisely collagen-based extracellular matrices, are often considered as a metazoan hallmark. Among the collagens, fibrillar collagens are present from sponges to humans, and are involved in the formation of the well-known striated fibrils. In this review we discuss the different steps in the evolution of this protein family, from the formation of an ancestral fibrillar collagen gene to the formation of different clades. Genomic data from the choanoflagellate (sister group of Metazoa) Monosiga brevicollis, and from diploblast animals, have suggested that the formation of an ancestral α chain occurred before the metazoan radiation. Phylogenetic studies have suggested an early emergence of the three clades that were first described in mammals. Hence the duplication events leading to the formation of the A, B and C clades occurred before the eumetazoan radiation. Another important event has been the two rounds of “whole genome duplication” leading to the amplification of fibrillar collagen gene numbers, and the importance of this diversification in developmental processes. We will also discuss some other aspects of fibrillar collagen evolution such as the development of the molecular mechanisms involved in the formation of procollagen molecules and of striated fibrils.
References
[1]
Myllyharju, J; Kivirikko, KI. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet 2004, 20, 33–43.
[2]
Exposito, JY; Cluzel, C; Garrone, R; Lethias, C. Evolution of collagens. Anat. Rec 2002, 268, 302–316.
[3]
Rasmussen, M; Jacobsson, M; Bj?rck, L. Genome-based identification and analysis of collagen-related structural motifs in bacterial and viral proteins. J. Biol. Chem 2003, 278, 32313–32316.
[4]
Celerin, M; Ray, JM; Schisler, NJ; Day, AW; Stetler-Stevenson, WG; Laudenbach, DE. Fungal fimbriae are composed of collagen. EMBO J 1996, 15, 4445–4453.
[5]
King, N; Westbrook, MJ; Young, SL; Kuo, A; Abedin, M; Chapman, J; Fairclough, S; Hellsten, U; Isogai, Y; Letunic, I; Marr, M; Pincus, D; Putnam, N; Rokas, A; Wright, KJ; Zuzow, R; Dirks, W; Good, M; Goodstein, D; Lemons, D; Li, W; Lyons, JB; Morris, A; Nichols, S; Richter, DJ; Salamov, A; Sequencing, JGI; Bork, P; Lim, WA; Manning, G; Miller, WT; McGinnis, W; Shapiro, H; Tjian, R; Grigoriev, IV; Rokhsar, D. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 2008, 451, 783–788.
[6]
Acton, S; Resnick, D; Freeman, M; Ekkel, Y; Ashkenas, J; Krieger, M. The collagenous domains of macrophage scavenger receptors and complement component C1q mediate their similar, but not identical, binding specificities for polyanionic ligands. J. Biol. Chem 1993, 268, 3530–3537.
[7]
Heino, J. The collagen family members as cell adhesion proteins. Bioessays 2007, 29, 1001–1010.
[8]
S?derh?ll, C; Marenholz, I; Kerscher, T; Rüschendorf, F; Esparza-Gordillo, J; Worm, M; Gruber, C; Mayr, G; Albrecht, M; Rohde, K; Schulz, H; Wahn, U; Hubner, N; Lee, YA. Variants in a novel epidermal collagen gene (COL29A1) are associated with atopic dermatitis. PLoS Biol 2007, 5, e242.
[9]
Exposito, JY; Garrone, R. Characterization of a fibrillar collagen gene in sponges reveals the early evolutionary appearance of two collagen gene families. Proc. Natl. Acad. Sci. USA 1990, 87, 6669–6673.
[10]
Boute, N; Exposito, JY; Boury-Esnault, N; Vacelet, J; Noro, N; Miyazaki, K; Yoshizato, K; Garrone, R. Type IV collagen in sponges, the missing link in basement membrane ubiquity. Biol. Cell 1996, 88, 37–44.
[11]
Aouacheria, A; Geourjon, C; Aghajari, N; Navratil, V; Deléage, G; Lethias, C; Exposito, JY. Insights into early extracellular matrix evolution: spongin short chain collagen-related proteins are homologous to basement membrane type IV collagens and form a novel family widely distributed in invertebrates. Mol. Biol. Evol 2006, 23, 2288–2302.
[12]
Wada, H; Okuyama, M; Satoh, N; Zhang, S. Molecular evolution of fibrillar collagen in chordates, with implications for the evolution of vertebrate skeletons and chordate phylogeny. Evol. Dev 2006, 8, 370–377.
[13]
Wick, G; Kalischnig, G; Maurer, H; Mayerl, C; Müller, PU. Really old-palaeoimmunology: immunohistochemical analysis of extracellular matrix proteins in historic and pre-historic material. Exp. Gerontol 2001, 36, 1565–1579.
[14]
Franc, S; Marzin, E; Boutillon, MM; Lafont, R; Lechéne de la Porte, P; Herbage, D. Immunohistochemical and biochemical analyses of 20,000–25,000-year-old fossil cartilage. Eur. J. Biochem 1995, 234, 125–131.
[15]
Asara, JM; Schweitzer, MH; Freimark, LM; Phillips, M; Cantley, LC. Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science 2007, 316, 280–285.
[16]
Schweitzer, MH; Zheng, W; Organ, CL; Avci, R; Suo, Z; Freimark, LM; Lebleu, VS; Duncan, MB; Vander Heiden, MG; Neveu, JM; Lane, WS; Cottrell, JS; Horner, JR; Cantley, LC; Kalluri, R; Asara, JM. Biomolecular characterization and protein sequences of the Campanian hadrosaur B. canadensis. Science 2009, 324, 626–631.
[17]
Bern, M; Phinney, BS; Goldberg, D. Reanalysis of Tyrannosaurus rex Mass Spectra. J. Proteome Res 2009, 8, 4328–4332.
[18]
Koch, M; Laub, F; Zhou, P; Hahn, RA; Tanaka, S; Burgeson, RE; Gerecke, DR; Ramirez, F; Gordon, MK. Collagen XXIV, a vertebrate fibrillar collagen with structural features of invertebrate collagens: selective expression in developing cornea and bone. J. Biol. Chem 2003, 278, 43236–43244.
[19]
Boot-Handford, RP; Tuckwell, DS; Plumb, DA; Rock, CF; Poulsom, R. A novel and highly conserved collagen [pro(α)1(XXVII)] with a unique expression pattern and unusual molecular characteristics establishes a new clade within the vertebrate fibrillar collagen family. J. Biol. Chem 2003, 278, 31067–31077.
[20]
Pace, JM; Corrado, M; Missero, C; Byers, PH. Identification, characterization and expression analysis of a new fibrillar collagen gene, COL27A1. Matrix Biol 2003, 22, 3–14.
[21]
Kleman, JP; Aeschlimann, D; Paulsson, M; van der Rest, M. Transglutaminase-catalyzed cross-linking of fibrils of collagen V/XI in A204 rhabdomyosarcoma cells. Biochemistry 1995, 34, 13768–13775.
[22]
Burgeson, RE; Hollister, DW. Collagen heterogeneity in human cartilage: identification of several new collagen chains. Biochem. Biophys. Res. Commun 1979, 87, 1124–1131.
[23]
Reese, CA; Mayne, R. Minor collagens of chicken hyaline cartilage. Biochemistry 1981, 20, 5443–5448.
[24]
Lees, JF; Tasab, M; Bulleid, NJ. Identification of the molecular recognition sequence which determines the type-specific assembly of procollagen. EMBO J 1997, 16, 908–916.
[25]
Aouacheria, A; Cluzel, C; Lethias, C; Gouy, M; Garrone, R; Exposito, JY. Invertebrate data predict an early emergence of vertebrate fibrillar collagen clades and an anti-incest model. J. Biol. Chem 2004, 279, 47711–47719.
[26]
Thom, JR; Morris, NP. Biosynthesis and proteolytic processing of type XI collagen in embryonic chick sterna. J. Biol. Chem 1991, 266, 7262–7269.
[27]
Linsenmayer, TF; Gibney, E; Igoe, F; Gordon, MK; Fitch, JM; Fessler, LI; Birk, DE. Type V collagen: molecular structure and fibrillar organization of the chicken α1(V) NH2-terminal domain, a putative regulator of corneal fibrillogenesis. J. Cell Biol 1993, 121, 1181–1189.
[28]
Plumb, DA; Dhir, V; Mironov, A; Ferrara, L; Poulsom, R; Kadler, KE; Thornton, DJ; Briggs, MD; Boot-Handford, RP. Collagen XXVII is developmentally regulated and forms thin fibrillar structures distinct from those of classical vertebrate fibrillar collagens. J. Biol. Chem 2007, 282, 12791–12795.
[29]
Hjorten, R; Hansen, U; Underwood, RA; Telfer, HE; Fernandes, RJ; Krakow, D; Sebald, E; Wachsmann-Hogiu, S; Bruckner, P; Jacquet, R; Landis, WJ; Byers, PH; Pace, JM. Type XXVII collagen at the transition of cartilage to bone during skeletogenesis. Bone 2007, 41, 535–542.
[30]
Exposito, JY; Larroux, C; Cluzel, C; Valcourt, U; Lethias, C; Degnan, BM. Demosponge and sea anemone fibrillar collagen diversity reveals the early emergence of A/C clades and the maintenance of the modular structure of type V/XI collagens from sponge to human. J. Biol. Chem 2008, 283, 28226–28235.
[31]
Exposito, JY; D’Alessio, M; Ramirez, F. Novel amino-terminal propeptide configuration in a fibrillar procollagen undergoing alternative splicing. J. Biol. Chem 1992, 267, 17404–17408.
[32]
Cluzel, C; Lethias, C; Garrone, R; Exposito, JY. Distinct maturations of N-propeptide domains in fibrillar procollagen molecules involved in the formation of heterotypic fibrils in adult sea urchin collagenous tissues. J. Biol. Chem 2004, 279, 9811–9817.
[33]
Exposito, JY; D’Alessio, M; Solursh, M; Ramirez, F. Sea urchin collagen evolutionarily homologous to vertebrate pro-α2(I) collagen. J. Biol. Chem 1992, 267, 15559–15562.
[34]
Suzuki, HR; Reiter, RS; D’Alessio, M; Di Liberto, M; Ramirez, F; Exposito, JY; Gambino, R; Solursh, M. Comparative analysis of fibrillar and basement membrane collagen expression in embryos of the sea urchin, Strongylocentrotus purpuratus. Zoolog. Sci 1997, 14, 449–454.
[35]
Dion, AS; Myers, JC. COOH-terminal propeptides of the major human procollagens. Structural, functional and genetic comparisons. J. Mol. Biol 1987, 193, 127–143.
[36]
Boot-Handford, RP; Tuckwell, DS. Fibrillar collagen: the key to vertebrate evolution? A tale of molecular incest. Bioessays 2003, 25, 142–151.
[37]
Yamada, Y; Avvedimento, VE; Mudryj, M; Ohkubo, H; Vogeli, G; Irani, M; Pastan, I; de Crombrugghe, B. The collagen gene: evidence for its evolutinary assembly by amplification of a DNA segment containing an exon of 54 bp. Cell 1980, 22, 887–892.
[38]
Exposito, JY; van der Rest, M; Garrone, R. The complete intron/exon structure of Ephydatia mülleri fibrillar collagen gene suggests a mechanism for the evolution of an ancestral gene module. J. Mol. Evol 1993, 37, 254–259.
[39]
Takahara, K; Hoffman, GG; Greenspan, DS. Complete structural organization of the human α1(V) collagen gene (COL5A1): divergence from the conserved organization of other characterized fibrillar collagen genes. Genomics 1995, 29, 588–597.
[40]
Vuoristo, MM; Pihlajamaa, T; Vandenberg, P; Prockop, DJ; Ala-Kokko, L. The human COL11A2 gene structure indicates that the gene has not evolved with the genes for the major fibrillar collagens. J. Biol. Chem 1995, 270, 22873–22881.
[41]
Exposito, JY; Cluzel, C; Lethias, C; Garrone, R. Tracing the evolution of vertebrate fibrillar collagens from an ancestral α chain. Matrix Biol 2000, 19, 275–279.
[42]
Miura, S; Kimura, S. Jellyfish mesogloea collagen. Characterization of molecules as α1α2α3 heterotrimers. J. Biol. Chem 1985, 260, 15352–15356.
[43]
Tillet, E; Franc, JM; Franc, S; Garrone, R. The evolution of fibrillar collagens: a sea-pen collagen shares common features with vertebrate type V collagen. Comp. Biochem. Physiol. B: Biochem. Mol. Biol 1996, 113, 239–246.
[44]
Sicot, FX; Exposito, JY; Masselot, M; Garrone, R; Deutsch, J; Gaill, F. Cloning of an annelid fibrillar-collagen gene and phylogenetic analysis of vertebrate and invertebrate collagens. Eur. J. Biochem 1997, 246, 50–58.
[45]
Yandell, M; Mungall, CJ; Smith, C; Prochnik, S; Kaminker, J; Hartzell, G; Lewis, S; Rubin, GM. Large-scale trends in the evolution of gene structures within 11 animal genomes. PLoS Comput. Biol 2006, 2, e15.
[46]
Roy, SW; Gilbert, W. Resolution of a deep animal divergence by the pattern of intron conservation. Proc. Natl. Acad. Sci. USA 2005, 102, 4403–4408.
[47]
Csur?s, M; Rogozin, IB; Koonin, EV. Extremely intron-rich genes in the alveolate ancestors inferred with a flexible maximum-likelihood approach. Mol. Biol. Evol 2008, 25, 903–911.
[48]
Irimia, M; Roy, SW. Spliceosomal introns as tools for genomic and evolutionary analysis. Nucleic Acids Res 2008, 36, 1703–1712.
[49]
Chevenet, F; Brun, C; Banuls, AL; Jacq, B; Chisten, R. TreeDyn: Towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 2006, 7.
[50]
Zhang, X; Boot-Handford, RP; Huxley-Jones, J; Forse, LN; Mould, AP; Robertson, DL; Li, L; Athiyal, M; Sarras, MP, Jr. The collagens of hydra provide insight into the evolution of metazoan extracellular matrices. J. Biol. Chem 2007, 282, 6792–6802.
[51]
Rychel, AL; Smith, SE; Shimamoto, HT; Swalla, BJ. Evolution and development of the chordates: collagen and pharyngeal cartilage. Mol. Biol. Evol 2006, 23, 541–549.
[52]
DeSalle, R; Schierwater, B. An even “newer” animal phylogeny. Bioessays 2008, 30, 1043–1047.
[53]
Zhang, G; Cohn, MJ. Genome duplication and the origin of the vertebrate skeleton. Curr. Opin. Genet. Dev 2008, 18, 387–393.
[54]
Degnan, BM; Vervoort, M; Larroux, C; Richards, GS. Early evolution of metazoan transcription factors. Curr. Opin. Genet. Dev 2009, 19, 591–599.
[55]
Garcia-Fernàndez, J; Benito-Gutiérrez, E. It’s a long way from amphioxus: descendants of the earliest chordate. Bioessays 2009, 31, 665–675.
[56]
Hejnol, A; Obst, M; Stamatakis, A; Ott, M; Rouse, GW; Edgecombe, GD; Martinez, P; Bagu?à, J; Bailly, X; Jondelius, U; Wiens, M; Müller, WE; Seaver, E; Wheeler, WC; Martindale, MQ; Giribet, G; Dunn, CW. Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc. Biol. Sci 2009, 276, 4261–4270.
[57]
Philippe, H; Derelle, R; Lopez, P; Pick, K; Borchiellini, C; Boury-Esnault, N; Vacelet, J; Renard, E; Houliston, E; Quéinnec, E; Da Silva, C; Wincker, P; Le Guyader, H; Leys, S; Jackson, DJ; Schreiber, F; Erpenbeck, D; Morgenstern, B; W?rheide, G; Manuel, M. Phylogenomics revives traditional views on deep animal relationships. Curr. Biol 2009, 19, 706–712.
[58]
van de Peer, Y; Maere, S; Meyer, A. The evolutionary significance of ancient genome duplications. Nat. Rev. Genet 2009, 10, 725–732.
[59]
Weil, D; Bernard, M; Gargano, S; Ramirez, F. The proα2(V) collagen gene is evolutionarily related to the major fibrillar-forming collagens. Nucleic Acids Res 1987, 15, 181–198.
[60]
Bernard, M; Yoshioka, H; Rodriguez, E; van der Rest, M; Kimura, T; Ninomiya, Y; Olsen, BR; Ramirez, F. Cloning and sequencing of pro-α1(XI) collagen cDNA demonstrates that type XI belongs to the fibrillar class of collagens and reveals that the expression of the gene is not restricted to cartilagenous tissue. J. Biol. Chem 1988, 263, 17159–17166.
[61]
Bulleid, NJ; Wilson, R; Lees, JF. Type-III procollagen assembly in semi-intact cells: chain association, nucleation and triple-helix folding do not require formation of inter-chain disulphide bonds but triple-helix nucleation does require hydroxylation. Biochem. J 1996, 317, 195–202.
[62]
Zhang, G; Miyamoto, MM; Cohn, MJ. Lamprey type II collagen and Sox9 reveal an ancient origin of the vertebrate collagenous skeleton. Proc. Natl. Acad. Sci. USA 2006, 103, 3180–3185.
[63]
Zhang, G; Cohn, MJ. Hagfish and lancelet fibrillar collagens reveal that type II collagen-based cartilage evolved in stem vertebrates. Proc. Natl. Acad. Sci. USA 2006, 103, 16829–16833.
[64]
Ohtani, K; Yao, T; Kobayashi, M; Kusakabe, R; Kuratani, S; Wada, H. Expression of Sox and fibrillar collagen genes in lamprey larval chondrogenesis with implications for the evolution of vertebrate cartilage. J. Exp. Zool. B: Mol. Dev. Evol 2008, 310, 596–607.
[65]
Wright, GM; Keeley, FW; Robson, P. The unusual cartilaginous tissues of jawless craniates, cephalochordates and invertebrates. Cell Tissue Res 2001, 304, 165–174.
[66]
Kuraku, S; Meyer, A; Kuratani, S. Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? Mol. Biol. Evol 2009, 26, 47–59.
[67]
Kuraku, S. Insights into cyclostome phylogenomics: Pre-2R or post-2R. Zoolog. Sci 2008, 25, 960–968.
[68]
Rychel, AL; Swalla, BJ. Development and evolution of chordate cartilage. J. Exp. Zool. B: Mol. Dev. Evol 2007, 308, 325–335.
[69]
Kadler, KE; Hill, A; Canty-Laird, EG. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr. Opin. Cell Biol 2008, 20, 495–501.
[70]
Wenstrup, RJ; Florer, JB; Davidson, JM; Phillips, CL; Pfeiffer, BJ; Menezes, DW; Chervoneva, I; Birk, DE. Murine model of the Ehlers-Danlos syndrome col5a1 haploinsufficiency disrupts collagen fibril assembly at multiple stages. J. Biol. Chem 2006, 281, 12888–12895.
[71]
Fernandes, RJ; Weis, M; Scott, MA; Seegmiller, RE; Eyre, DR. Collagen XI chain misassembly in cartilage of the chondrodysplasia (cho) mouse. Matrix Biol 2007, 26, 597–603.