全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Potential Effects of Chrysin on MDA-MB-231 Cells

DOI: 10.3390/ijms11031057

Keywords: chrysin, cell growth inhibition, lipid accumulation, apoptosis, PPAR mRNA expression, ER-negative breast cancer

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study aims to elucidate the effects of chrysin on human ER-negative breast cancer cell line, MDA-MB-231 . The study demonstrated that treatment of MDA-MB-231 cells with 20 μM chysin for 48 h significantly inhibited the growth of MDA-MB-231 cells and induced cytoplasmic lipid accumulation in the cells, but that the observed of cell death was not caused by apoptosis. The expression of PPARalpha mRNA in chrysin-treated MDA-MB-231 cells was significantly increased, which was likely associated to the proliferation of the cells post chrysin treatment.

References

[1]  Robards, K; Antolovich, M. Analytical chemistry of fruit bioflavonoids: A review. Analyst 1997, 122, 11–34.
[2]  Pietta, PG. Flavonoids as antioxidants. J. Nat. Prod 2000, 63, 1035–1042.
[3]  Zheng, X; Meng, WD; Xu, YY; Cao, JG; Qing, FL. Synthesis and anticancer effect of chrysin derivatives. Bioorg. Med. Chem. Lett 2003, 13, 881–884.
[4]  Kale, A; Gawande, S; Kotwal, S. Cancer phytotherapeutics: Role for flavonoids at the cellular level. Phytother. Res 2008, 22, 567–577.
[5]  Parajuli, P; Joshee, N; Rimando, AM; Mittal, S; Yadav, AK. In vitro antitumor mechanisms of various Scutellaria extracts and constituent flavonoids. Planta Med 2009, 75, 41–48.
[6]  Fritah, A; Saucier, C; De Wever, O; Bracke, M; Bieche, I; Lidereau, R; Gespach, C; Drouot, S; Redeuilh, G; Sabbah, M. Role of WISP-2/CCN5 in the maintenance of a differentiated and noninvasive phenotype in human breast cancer cells. Mol. Cell Biol 2008, 28, 1114–1123.
[7]  Izuta, H; Shimazawa, M; Tazawa, S; Araki, Y; Mishima, S; Hara, H. Protective effects of Chinese propolis and its component, chrysin, against neuronal cell death via inhibition of mitochondrial apoptosis pathway in SH-SY5Y cells. J. Agric. Food Chem 2008, 56, 8944–8953.
[8]  Weng, MS; Ho, YS; Lin, JK. Chrysin induces G1 phase cell cycle arrest in C6 glioma cells through inducing p21Waf1/Cip1 expression: Involvement of p38 mitogen-activated protein kinase. Biochem. Pharmacol 2005, 69, 1815–1827.
[9]  Woo, KJ; Jeong, YJ; Park, JW; Kwon, TK. Chrysin-induced apoptosis is mediated through caspase activation and Akt inactivation in U937 leukemia cells. Biochem. Biophys. Res. Commun 2004, 325, 1215–1222.
[10]  Zhang, T; Chen, X; Qu, L; Wu, J; Cui, R; Zhao, Y. Chrysin and its phosphate ester inhibit cell proliferation and induce apoptosis in Hela cells. Bioorg. Med. Chem 2004, 12, 6097–6105.
[11]  Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63.
[12]  Bocca, C; Bozzo, F; Martinasso, G; Canuto, RA; Miglietta, A. Involvement of PPARalpha in the growth inhibitory effect of arachidonic acid on breast cancer cells. Br. J. Nutr 2008, 100, 739–750.
[13]  Suchanek, KM; May, FJ; Robinson, JA; Lee, WJ; Holman, NA; Monteith, GR; Roberts-Thomson, SJ. Peroxisome proliferator-activated receptor alpha in the human breast cancer cell lines MCF-7 and MDA-MB-231. Mol. Carcinog 2002, 34, 165–171.
[14]  Hall, MG; Quignodon, L; Desvergne, B. Peroxisome proliferator-activated receptor β/δ in the brain: Facts and hypothesis. PPAR Res 2008, 2008, 780452:1–780452:10.
[15]  Hull, MA; Gardner, SH; Hawcroft, G. Activity of the non-steroidal anti-inflammatory drug indomethacin against colorectal cancer. Cancer Treat. Rev 2003, 29, 309–320.
[16]  Uliasz, TF; Hewett, SJ. A microtiter trypan blue absorbance assay for the quantitative determination of excitotoxic neuronal injury in cell culture. J. Neurosci. Methods 2000, 100, 157–163.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133