全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Spatial Variability and Prediction of Soil Organic Matter at County Scale on the Loess Plateau
黄土丘陵沟壑区县域土壤有机质空间分布特征及预测

Keywords: 土壤有机质,土地利用,地形因素,遥感指数,空间变异,预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

Analysis and forecast on the spatial distribution and dynamics of soil properties is an important element of sustainable land management. Spatial variation of soil organic matter was analyzed according to different land use types and different topography conditions, based on data from 254 points of surface soil (0~20cm) in Hengshan county on the Loess Plateau (NW China). Correlation analyses were carried out between the soil organic matter and the terrain attributes and remote sensing indices. Finally, the land use types and the terrain attributes and remote sensing indices were used to predict soil organic matter spatial distribution by multiple-linear regression analysis. Significant differences in soil organic matter among different land use types were found, the highest values in soil organic matter were measured in soils from paddy field, and lower values in the soils from woodland and shrub land. For soil organic matter, the tendency was: paddy field>irrigated farmland>terrace farmland>check-dam farmland>grassland>slope farmland>woodland>shrub land. In different slope gradients, soil organic matter in ‘0~3°’ gradients was significantly higher than other slope gradient classes. There was little difference in soil organic matter among different slope aspects, but there was a tendency that soil organic matter in northern aspects was higher. Different correlations were found between the soil organic matter and the terrain attributes and remote sensing indices. It was found that there are positive correlations between soil organic matter and the COSα, CTI, MSAVI and WI. There is a strong negative correlation between soil organic matter and elevation. Using environmental variables to predict soil organic matter, the regression model explains 34.6% of the variability of the measured soil organic matter. But the variation is rather large and there is a more smoothing effect on the predicted values for soil organic matter.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133