全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Automatically Outlier-Resisting Subspace Learning
一种自动抑制离群点的子空间学习方法

Keywords: Subsoace learning,Dimension reduction,Outlier data
子空间
,降维,离群数据,自动,离群点,子空间学习,降维方法,Learning,试验,仿真数据,全局最优解,分解问题,特征值,求解,子空间的,位置,直接探测,改进,离群数据,真实分布,影响,outlier,基向量

Full-Text   Cite this paper   Add to My Lib

Abstract:

Subspace learning is an effective dimensionality reduction method. However, the resulting basis vectors are significantly biased due to the presence of outlier points. Consequently, the transformed data in the subspace cannot faithfully describe the intrinsic distribution of the original data. To tackle this problem, a modified subspace learning algorithm is proposed. In the algorithm it is not necessary to detect outliers. Moreover, the algorithm is reduced to an eignenvalue problem which has a globally optimal solution. Experiments on synthetic data demonstrate the effectiveness of the proposed algorithm.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133