Mathematical morphology " target="_blank"> ')">Mathematical morphology
图像去噪;双重局部维纳滤波;椭圆型方向窗;数学形态学;利用;数学形态学;方向信息;小波域;局部;维纳滤波器;图像去噪算法;Mathematical;Morphology;Windows;Directional;Filtering;Wiener;Local;Doubly;实小波;分离;效果;结果;实验;含噪图像, Open Access Library" />

全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Wavelet-Based Image Denoising via Doubly Local Wiener Filtering Using Directional Windows and Mathematical Morphology
利用数学形态学和方向窗的小波域双重局部维纳滤波图像去噪算法

Keywords: Image denoising,Doubly local Wiener filtering,Elliptic directional window,Mathematical morphology " target="_blank"> ')">Mathematical morphology
图像去噪&searchField=keyword">Mathematical morphology &prev_q= ')">Mathematical morphology " target="_blank"> ')">Mathematical morphology
图像去噪
,双重局部维纳滤波,椭圆型方向窗,数学形态学,利用,数学形态学,方向信息,小波域,局部,维纳滤波器,图像去噪算法,Mathematical,Morphology,Windows,Directional,Filtering,Wiener,Local,Doubly,实小波,分离,效果,结果,实验,含噪图像

Full-Text   Cite this paper   Add to My Lib

Abstract:

Wavelet-based image denoising algorithms is a hot point in image processing applications. In this paper, a doubly local Wiener filtering algorithm using elliptic directional window and mathematical morphology is proposed, in which the mathematical morphology is first used to divide the image into texture and smooth regions, and then combine the elliptic directional window to estimate the signal variance of each wavelet coefficients in different oriented subbands, finally the doubly local Wiener filtering is used to denoise the observed image. Experiment results show that the proposed algorithm is better than the existing image denoising algorithms using 2-D real separable wavelets.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133