|
电子与信息学报 2006
Research on GPR Multi-object Recognition
|
Abstract:
With limited samples, SVM has stronger ability of generalization in comparison with machine learning algorithm. In this paper, the SVM is combined with the Ground Penetrating Radar(GPR) multi-object recognition, and a GPR multi-object recognition method is proposed based on the one against one SVM. The proposed method includes the GPR multi-object recognition method based on one against one SVM, the parameter selection method based on the cross-validation and the multichannel recognition method. The contrast analysis between the proposed method and the conventional neural network method is given. The proposed method can be combined with object-feature extraction methods. It is shown that the method is effective in the experimental analysis. The conclusion can direct the research on GPR object recognition.