全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Novel Bayesian Modulation Classification Algorithm
一种新的贝叶斯调制分类算法

Keywords: Markov Chain Monte Carlo (MCMC),Modulation classification,Bayesian classifier,Metropolis-Hastings (M-H) algorithm,Marginal likelihood function
马尔可夫链蒙特卡罗(MCMC)
,调制分类,贝叶斯分类器,Metropolis-Hastings(M-H)算法,边缘似然函数

Full-Text   Cite this paper   Add to My Lib

Abstract:

A novel method is proposed for digital modulation classification based on Markov chain Monte Carlo (MCMC). Considering the difficulty for Bayesian classifier with unknown residual carrier phase and frequency, marginal likelihood probability density is estimated by Metropolis-Hastings (M-H) algorithm, which kept the theoretical optimality and robustness of Bayesian classifier. The simulated results show that the novel classifier outperforms the one based on cumulants.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133