全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Integral Dose and Radiation-Induced Secondary Malignancies: Comparison between Stereotactic Body Radiation Therapy and Three-Dimensional Conformal Radiotherapy

DOI: 10.3390/ijerph9114223

Keywords: stereotactic body radiation therapy, integral dose, linear-quadratic model, biologically effective dose, BED, radio-induced secondary malignancies

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of the present paper is to compare the integral dose received by non-tumor tissue (NTID) in stereotactic body radiation therapy (SBRT) with modified LINAC with that received by three-dimensional conformal radiotherapy (3D-CRT), estimating possible correlations between NTID and radiation-induced secondary malignancy risk. Eight patients with intrathoracic lesions were treated with SBRT, 23 Gy × 1 fraction. All patients were then replanned for 3D-CRT, maintaining the same target coverage and applying a dose scheme of 2 Gy × 32 fractions. The dose equivalence between the different treatment modalities was achieved assuming α/β = 10Gy for tumor tissue and imposing the same biological effective dose (BED) on the target (BED = 76Gy 10). Total NTIDs for both techniques was calculated considering α/β = 3Gy for healthy tissue. Excess absolute cancer risk (EAR) was calculated for various organs using a mechanistic model that includes fractionation effects. A paired two-tailed Student t-test was performed to determine statistically significant differences between the data ( p ≤ 0.05). Our study indicates that despite the fact that for all patients integral dose is higher for SBRT treatments than 3D-CRT ( p = 0.002), secondary cancer risk associated to SBRT patients is significantly smaller than that calculated for 3D-CRT ( p = 0.001). This suggests that integral dose is not a good estimator for quantifying cancer induction. Indeed, for the model and parameters used, hypofractionated radiotherapy has the potential for secondary cancer reduction. The development of reliable secondary cancer risk models seems to be a key issue in fractionated radiotherapy. Further assessments of integral doses received with 3D-CRT and other special techniques are also strongly encouraged.

References

[1]  Van Leeuwen, F.E.; Travis, L.B. Second Cancers. In Cancer: Principles and Practice of Oncology; Devita, V.T., Hellman, S., Rosenberg, S.A., Eds.; Lippincott, Williams & Wilkins: Philadelphia, PA, USA, 2004.
[2]  Hall, E.J. Review of Essential and Topical Radiobiology. In Radiobiological Modelling in Radiation Oncology; Dale, R., Jones, B., Eds.; The British Institure of Radiology: London, UK, 2007.
[3]  Clarke, M.; Collins, R.; Darby, S.; Davies, C.; Elphinstone, P.; Evans, E.; Godwin, J.; Gray, R.; Hicks, C.; James, S.; et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: An overview of the randomised trials. Lancet 2005, 366, 2087–2106.
[4]  Brenner, D.J.; Curtis, R.E.; Hall, E.J.; Ron, E. Second malignancies in prostate carcinoma patients after radiotherapy compared with surgery. Cancer 2000, 88, 398–406, doi:10.1002/(SICI)1097-0142(20000115)88:2<398::AID-CNCR22>3.0.CO;2-V.
[5]  Followill, D.; Geis, P.; Boyer, A. Estimates of whole-body dose equivalent produced by beam intensity modulated conformal therapy. Int. J. Radiat. Oncol. Biol. Phys. 1997, 38, 667–672, doi:10.1016/S0360-3016(97)00012-6.
[6]  Hall, E.J.; Wuu, C.-S. Radiation-induced second cancers: The impact of 3D-CRT and IMRT. Int. J. Radiat. Oncol. Biol. Phys. 2003, 56, 83–88, doi:10.1016/S0360-3016(03)00073-7.
[7]  Karlsson, P.; Holmberg, E.; Samuelsson, A.; Johansson, K.-A.; Wallgren, A. Soft tissue sarcoma after treatment for breast cancer—A Swedish population-based study. Eur. J. Cancer 1998, 34, 2068–2075, doi:10.1016/S0959-8049(98)00319-0.
[8]  Nguyen, F.; Rubino, C.; Guerin, S.; Diallo, I.; Samand, A.; Hawkins, M.; Oberlin, O.; Lefkopoulos, D.; De Vathaire, F. Risk of a second malignant neoplasm after cancer in childhood treated with radiotherapy: Correlation with the integral dose restricted to the irradiated fields. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 908–915, doi:10.1016/j.ijrobp.2007.10.034.
[9]  Greco, C.; Wolden, S. Current status of radiotherapy with proton and light ion beams. Cancer 2007, 109, 1227–1238, doi:10.1002/cncr.22542.
[10]  Engels, H.; Wambersie, A. Relative biological effectiveness of neutrons for cancer induction and other late effects: A review of radiobiological data. Rec. Res. Cancer Res. 1998, 150, 54–87, doi:10.1007/978-3-642-78774-4_3.
[11]  Khan, F.M. The Physics of Radiation Therapy; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2003; pp. 429–430.
[12]  Hermanto, U.; Frija, E.K.; Lii, M.J.; Chang, E.L.; Mahajan, A.; Woo, S.Y. Intensity-modulated radiotherapy (IMRT) and conventional three-dimensional conformal radiotherapy for high-grade gliomas: Does IMRT increase the integral dose to normal brain? Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 1135–1144, doi:10.1016/j.ijrobp.2006.10.032.
[13]  D’Souza, W.D.; Rosen, II. Nontumor integral dose variation in conventional radiotherapy treatment planning. Med. Phys. 2003, 30, 2065–2071.
[14]  Mock, U.; Georg, D.; Bogner, J.; Auberger, T.; P?tter, R. Treatment planning comparison of conventional, 3D conformal, and intensity-modulated photon (IMRT) and proton therapy for paranasal sinus carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2004, 58, 147–154, doi:10.1016/S0360-3016(03)01452-4.
[15]  Pirzkall, A.; Lohr, F.; H?ss, A.; Wannenmacher, M.; Debus, J. Comparison of intensity modulated radiotherapy with conventional conformal radiotherapy for complex-shaped tumors. Int. J. Radiat. Oncol. Biol. Phys. 2000, 48, 1371–1380, doi:10.1016/S0360-3016(00)00772-0.
[16]  Lian, J.; Mackenzie, M.; Joseph, K.; Pervez, N.; Dundas, G.; Urtasun, R.; Pearcey, R. Assesement of extended-field radiotherapy for stage IIIC endometrial cancer using three-dimensional conformal radiotherapy, intensity-modulated radiotherapy, and helical tomotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 935–943, doi:10.1016/j.ijrobp.2007.10.021.
[17]  Lung Cancer STARS (Stereotactic Radiotherapy vs. Surgery) Trial, International Randomized Study to Compare CyberKnife Stereotactic Radiotherapy with Surgical Resection in Stage I Non-Small Cell Lung Cancer. Principal Investigator: Jack A. Roth, Department of Thoracic and Cardiovascular Surgery, MD Anderson Cancer Center. Clinical Trials.gov Identifier: NCT00840749. Available online: http://clinicaltrials.gov/ct2/show/NCT00840749 (accessed on 23 April 2012).
[18]  Aird, E.G.A. Second cancer risk, concomitant exposures and IRMER. Brit. J. Radiol. 2004, 77, 983–985.
[19]  Trott, K.R. Second Cancer after Radiotherapy. In Basics Clinical Radiobiology; van der Kogel, A., Joiner, M., Eds.; Hodder Arnold Publication: London, UK, 2008.
[20]  Xu, X.G.; Bednarz, B.; Paganetti, H. A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction. Phys. Med. Biol. 2008, 53, R193, doi:10.1088/0031-9155/53/13/R01.
[21]  The 2007 recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 2007, 37, 1–332.
[22]  Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII, Phase 2; National Academy Press: Washington, DC, USA, 2006.
[23]  Shimizu, Y.; Kato, H.; Schull, W.J. Studies of the mortality of A-bomb survivors. 9. Mortality, 1950–1985: Part 2. Cancer mortality based on the recently revised doses (DS86). Radiat. Res. 1990, 121, 120–141.
[24]  Pierce, D.A.; Shimizu, Y.; Preston, D.L.; Vaeth, M.; Mabuchi, K. Mabuchi, K. Studies of the mortality of atomic bomb survivors. Report 12, Part I. Cancer: 1950–1990. Radiat. Res. 1996, 146, 1–27, doi:10.2307/3579391.
[25]  Schneider, U. Modelling the risk of secondary malignancies after radiotherapy. Genes 2011, 2, 1033–1049, doi:10.3390/genes2041033.
[26]  Ruben, J.D.; Davis, S.; Evans, C.; Jones, P.; Gagliardi, F.; Haynes, M.; Hunter, A. The effect of intensity-modulated radiotherapy on radiation-induced second malignancies. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 1530–1536, doi:10.1016/j.ijrobp.2007.08.046.
[27]  Schneider, U.; Kaser-Hotz, B. Radiation risk estimates after radiotherapy: Applications of the organ equivalent dose concept to plateau dose-response relationships. Radiat.Environ. Biophys. 2005, 44, 235–239, doi:10.1007/s00411-005-0016-1.
[28]  Schneider, U.; Zwahlen, D.; Ross, D.; Kaser-Hotz, B. Estimation of radiation-induced cancer from three-dimensional dose distributions: Concepts of organ equivalent dose. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 1510–1515, doi:10.1016/j.ijrobp.2004.12.040.
[29]  Schneider, U. Mechanistic model of radiation-induced cancer after fractionated radiotherapy using the linear quadratic formula. Med. Phys. 2009, 36, 1138–1143, doi:10.1118/1.3089792.
[30]  Schneider, U.; Sumila, M.; Robotka, J. Site-specific dose-response relationship for cancer induction from the combined Japanese A-bomb and Hogkin cohorts for doses relevant to radiotherapy. Theor. Biol. Med. Model. 2011, 8, 27, doi:10.1186/1742-4682-8-27.
[31]  Schneider, U.; Besserer, J.; Mack, A. Hypofractionated radiotherapy has the potential for second cancer reduction. Theor. Biol. Med. Model. 2010, 7, 4, doi:10.1186/1742-4682-7-4.
[32]  Carrasco, P.; Jornet, N.; Duch, M.A.; Weber, L.; Ginjaume, M.; Eudaldo, T.; Jurado, D.; Ruiz, A.; Ribas, M. Comparison of dose calculation algorithms in phantoms with lung equivalent heterogeneities under conditions of lateral electronic disequilibrium. Med. Phys. 2004, 31, 2899–2911.
[33]  Petti, P.L.; Chuang, C.F.; Smith, V.; Larson, D.A. Peripheral doses in CyberKniferadiosurgery. Med. Phys. 2006, 33, 1770–1779, doi:10.1118/1.2198173.
[34]  Uematsu, M.; Shioda, A.; Suda, A.; Fukui, T.; Ozeki, Y.; Hama, Y.; Wong, J.R.; Kusano, S. Computer tomography guided frameless stereotactic radiotherapy for stage I nonsmall cell lung cancer: A 5 year experience. Int. J. Radiat. Oncol. Biol. Phys. 2001, 51, 666–670.
[35]  Nagata, Y.; Takayama, K.; Matsuo, Y.; Norihisa, Y.; Mizowaki, T.; Sakamoto, T.; Sakamoto, M.; Mitsumori, M.; Shibuya, K.; Araki, N.; et al. Clinical outcomes of a Phase I/II study of 48 Gy of stereotactic body radiation therapy in 4 fractions for primary lung cancer using a stereotactic body frame. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 1427–1431, doi:10.1016/j.ijrobp.2005.05.034.
[36]  Herman, T.D.L.F.; Vlachaki, M.T.; Herman, T.S.; Hibbitts, K.; Stoner, J.A.; Ahmad, S. Stereotactic body radiation therapy (SBRT) and respiratory gating in lung cancer: Dosimetric and radiobiological considerations. J. Appl. Clin. Med. Phys. 2010, 11, 1.
[37]  Hamamoto, Y.; Kataoka, M.; Yamashita, M. Local control of metastatic lung tumors treated with SBRT of 48 Gy in four fractions: In comparison with primary lung cancer. Jpn. J. Clin. Oncol. 2010, 40, 125–129, doi:10.1093/jjco/hyp129.
[38]  Ekstrand, K.E.; Barnes, W.H. Pitfalls in the use of high energy x-rays to treat tumours in the lung. Int. J. Radiat. Oncol. Biol. Phys. 1990, 18, 249–252, doi:10.1016/0360-3016(90)90290-Z.
[39]  Hunt, M.A.; Desobry, G.E.; Fowble, B.; Coia, L.R. Effects of low-density lateral interfaces on soft-tissue doses. Int. J. Radiat. Oncol. Biol. Phys. 1997, 37, 475–482, doi:10.1016/S0360-3016(96)00499-3.
[40]  Brenner, D.J. The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin. Radiat. Oncol. 2008, 18, 234–239, doi:10.1016/j.semradonc.2008.04.004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133