According to risk systems theory and the characteristics of the chemical industry, an index system was established for risk assessment of enterprises in chemical industrial parks (CIPs) based on the inherent risk of the source, effectiveness of the prevention and control mechanism, and vulnerability of the receptor. A comprehensive risk assessment method based on catastrophe theory was then proposed and used to analyze the risk levels of ten major chemical enterprises in the Songmu Island CIP, China. According to the principle of equal distribution function, the chemical enterprise risk level was divided into the following five levels: 1.0 (very safe), 0.8 (safe), 0.6 (generally recognized as safe, GRAS), 0.4 (unsafe), 0.2 (very unsafe). The results revealed five enterprises (50%) with an unsafe risk level, and another five enterprises (50%) at the generally recognized as safe risk level. This method solves the multi-objective evaluation and decision-making problem. Additionally, this method involves simple calculations and provides an effective technique for risk assessment and hierarchical risk management of enterprises in CIPs.
References
[1]
Li, F.Y.; Bi, J.; Huang, L.; Qu, C.S.; Yang, J.; Bu, Q.M. Mapping human vulnerability to chemical accidents in the vicinity of chemical industry parks. J. Hazard. Mater. 2010, 179, 247–255.
[2]
Xu, M.; Wu, Z.Z. Three-stage optimal method of land-use safety planning for chemical industry park. Procedia Eng. 2011, 26, 1844–1850, doi:10.1016/j.proeng.2011.11.2375.
[3]
Ding, J.S.; Hua, W.Q. Featured chemical industrial parks in China: History, current status and outlook. Resour. Conserv. Recycl. 2012, 63, 43–53, doi:10.1016/j.resconrec.2012.03.001.
[4]
Cave, S.R.; Edwards, D.W. Chemical process route selection based on assessment of inherent environmental hazard. Comput. Chem. Eng. 1997, 21, S965–S970.
[5]
Gunasekera, M.Y.; Edwards, D.W. Estimating the environmental impact of catastrophic chemical releases to the atmosphere an index method for ranking alternative chemical process route. Saf. Environ. Prot. 2003, 81, 463–474, doi:10.1205/095758203770866638.
[6]
Shah, S.; Fischer, U.; Hungerbühler, K. A hierarchical approach for the evaluation of chemical process aspects from the perspective of inherent safety. Process Saf. Environ. Prot. 2003, 81, 430–443, doi:10.1205/095758203770866601.
[7]
Faisal, I.K.; Paul, R.A. I2SI: A comprehensive quantitative tool for inherent safety and cost evaluation. J. Loss Prev. Process Ind. 2005, 18, 310–326, doi:10.1016/j.jlp.2005.06.022.
[8]
Wei, C.Y.; Rogers, W.J.; Mannan, M.S. Layer of protection analysis for reactive chemical risk assessment. J. Hazard. Mater. 2008, 159, 19–24, doi:10.1016/j.jhazmat.2008.06.105.
[9]
Achour, M.H.; Haroun, A.E.; Schult, C.J.; Gasem, K.A.M. A new method to assess the environmental risk of a chemical process. Chem. Eng. Process. 2005, 44, 901–909, doi:10.1016/j.cep.2004.10.003.
[10]
Jia, Q.; Huang, L.; Yuan, Z.W.; Zhang, X.F. Assessment and management of accidental environmental risks in the petrochemical industry. Acta. Sci. Circumst. 2010, 30, 1510–1517.
[11]
European Council. Council regulation (EEC) No 793/93 of 23 March 1993 on the evaluation and control of the risks of existing substances. Off. J. 1993, L84, 1–75.
[12]
European Commission. Technical Guidance Document on Risk Assessment in Support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances and Commission Regulation (EC) No 1488/94 on Risk Assessment for Existing Substances, and Directive 98/8/EC of the European Parliament and of the Council Concerning the Placing of Biocidal Products on the Market—Part I; Institute for Health and Consumer Protection, European Chemicals Bureau, European Communities: Varese, Italy, 2003.
[13]
Huang, L.; Wan, W.B.; Li, F.Y.; Li, B.; Yang, J.; Bi, J. A two-scale system to identify environmental risk of chemical industry clusters. J. Hazard. Mater. 2011, 186, 247–255, doi:10.1016/j.jhazmat.2010.10.117.
Zhang, T.J.; Ren, S.X.; Li, S.G.; Zhang, T.C.; Xu, H.J. Application of the catastrophe progression method in predicting coal and gas outburst. Min. Sci. Technol. 2009, 19, 430–434.
[16]
Su, S.L.; Li, D.; Yu, X.; Zhang, Z.H.; Zhang, Q.; Xiao, R.; Zhi, J.J.; Wu, J.P. Assessing land ecological security in Shanghai (China) based on catastrophe theory. Stoch. Environ. Res. Risk. Assess. 2011, 25, 737–746, doi:10.1007/s00477-011-0457-9.
[17]
Wang, W.J.; Liu, S.L.; Zhang, S.S.; Chen, J.W. Assessment of a model of pollution disaster in near-shore coastal waters based on catastrophe theory. Ecol. Model. 2011, 222, 307–312, doi:10.1016/j.ecolmodel.2010.09.007.
[18]
Poston, T.; Ian, S. Catastrophe Theory and Its Applications, 1st ed.; Pitman Publishing Ltd.: London, UK, 1978.
[19]
Bi, J.; Yang, J.; Li, Q.L. Regional Environmental Risk Analysis and Management, 1st ed.; China Environmental Science Press: Beijing, China, 2006; pp. 22–30. (in Chinese).
[20]
Chen, G.H.; Zhang, J.; Zhang, H.; Yan, W.W.; Chen, Q.G. Study on regional risk assessment methodology. China Saf. Sci. J. 2006, 16, 112–117. (in Chinese).
[21]
Jiang, W.Y.; Tang, Q.H.; Li, H.Z.; Yu, W.X.; Liu, J.X. Development of composite environment risk evaluation method for chemical enterprises and its application. China Environ. Sci. 2010, 30, 133–138. (in Chinese).
[22]
Standardization Administration of the People’s Republic of China. Identification of Major Hazard Installations for Dangerous Chemicals (GB18218–2009); Standards Press of China: Beijing, China, 2009. (in Chinese).
[23]
The Administrative Centre for China’s Agenda 21. Guidelines on Emergency Response System for Chemical Industry Parks; Chemical industry press: Beijing, China, 2006. (in Chinese).
[24]
Shi, Y.Q.; Liu, Y.L.; He, J.P. Further study on some questions of catastrophe evaluation method. Eng. J. Wuhan Univ. 2003, 36, 132–136. (in Chinese).
[25]
Xiong, Y.; Zeng, G.M.; Chen, G.Q.; Tang, L.; Wang, K.L.; Huang, D.Y. Combining AHP with GIS in synthetic evaluation of eco-environment quality—A case study of Hunan Province, China. Ecol. Model. 2007, 209, 307–312.