全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Use of a Deuterated Internal Standard with Pyrolysis-GC/MS Dimeric Marker Analysis to Quantify Tire Tread Particles in the Environment

DOI: 10.3390/ijerph9114033

Keywords: pyrolysis-GC/MS, internal standard, tire wear, environmental, rubber

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pyrolysis(pyr)-GC/MS analysis of characteristic thermal decomposition fragments has been previously used for qualitative fingerprinting of organic sources in environmental samples. A quantitative pyr-GC/MS method based on characteristic tire polymer pyrolysis products was developed for tread particle quantification in environmental matrices including soil, sediment, and air. The feasibility of quantitative pyr-GC/MS analysis of tread was confirmed in a method evaluation study using artificial soil spiked with known amounts of cryogenically generated tread. Tread concentration determined by blinded analyses was highly correlated (r 2 3 0.88) with the known tread spike concentration. Two critical refinements to the initial pyrolysis protocol were identified including use of an internal standard and quantification by the dimeric markers vinylcyclohexene and dipentene, which have good specificity for rubber polymer with no other appreciable environmental sources. A novel use of deuterated internal standards of similar polymeric structure was developed to correct the variable analyte recovery caused by sample size, matrix effects, and ion source variability. The resultant quantitative pyr-GC/MS protocol is reliable and transferable between laboratories.

References

[1]  Hitchcock, K.; Panko, J.; Scott, P. Incorporating chemical footprint reporting into social responsibility reporting. Integr. Eviron. Assess. Manag. 2012, 8, 386–388, doi:10.1002/ieam.1288.
[2]  Williams, E.S.; Panko, J.; Paustenbach, D.J. The European Union’s REACH regulation: A review of its history and requirements. Crit. Rev. Toxicol. 2009, 39, 553–575, doi:10.1080/10408440903036056.
[3]  Baugros, J.-B.; Giroud, B.; Dessalces, G.; Grenier-Loustalot, M.-F.; Cren-Olive, C. Multiresidue analytical methods for the ultra-trace quantification of 33 priority substances present in the list of REACH in real water samples. Anal. Chim. Acta 2008, 607, 191–203, doi:10.1016/j.aca.2007.11.036.
[4]  Hanke, G.; Polesello, S.; Mariani, G.; Comero, S.; Wollgast, J.; Loos, R.; Ademollo, N.; Bidoglio, G. Chemical-monitoring on-site exercises to harmonize analytical methods for priority substances in the European Union. TrAC-Trend Anal. Chem. 2012, 36, 25–35, doi:10.1016/j.trac.2012.04.002.
[5]  Global Demand for Tires to Reach 3.3 Billion Units in 2015. Rubber World, Available online: http://www.rubberworld.com/RWmarket_report.asp?id=750 (accessed on 21 August 2012).
[6]  Blok, J. Environmental exposure of road boarders to zinc. Sci. Total Environ. 2005, 348, 173–190, doi:10.1016/j.scitotenv.2004.12.073.
[7]  Marwood, C.; McAtee, B.; Kreider, M.; Ogle, R.S.; Finley, B.; Sweet, L.; Panko, J. Acute aquatic toxicity of tire and road wear particles to alga, daphnid, and fish. Ecotoxicology 2011, 20, 2079–2089, doi:10.1007/s10646-011-0750-x.
[8]  Panko, J.M.; Kreider, M.L.; McAtee, B.L.; Marwood, C. Chronic toxicity of tire and road wear particles to water- and sediment-dwelling organisms. Ecotoxicology 2012. [Epub ahead of print].
[9]  Wik, A.; Dave, G. Occurrence and effects of tire wear particles in the environment—A critical review and an initial risk assessment. Environ. Pollut. 2009, 157, 1–11, doi:10.1016/j.envpol.2008.09.028.
[10]  Gualtieri, M.; Andrioletti, M.; Mantecca, P.; Vismara, C.; Camatini, M. Impact of tire debris on in vitro and in vivo systems. Part. Fibre Toxicol. 2005, 2, 1–14, doi:10.1186/1743-8977-2-1.
[11]  Stephensen, E.; Adolfsson-Erici, M.; Hulander, M.; Parkkonen, J.; Forlin, L. Rubber additives induce oxidative stress in rainbow trout. Aquat. Toxicol. 2005, 75, 136–143.
[12]  Kreider, M.L.; Doyle-Eisele, M.; Russell, R.G.; McDonald, J.D.; Panko, J.M. Evaluation of potential for toxicity from subacute inhalation of tire and road wear particles in rats. Inhal. Toxicol. 2012, 24, 907–917, doi:10.3109/08958378.2012.730071.
[13]  Health Effects Institute. Traffic-Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health Effects; HEI Panel on the Health Effects of Traffic-Related Air Pollution: Boston, MA, USA, 2010. Available online: http://pubs.healtheffects.org/getfile.php?u=553 (accessed on 19 September 2012).
[14]  Thorpe, A.; Harrison, R.M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total. Environ. 2008, 400, 270–282.
[15]  Kreider, M.; Panko, J.; McAtee, B.; Sweet, L.; Finley, B. Physical and chemical characterization of tire-related particles: Comparison of particles generated using different methodologies. Sci. Total Environ. 2009, 408, 652–659.
[16]  Qian, K.; Killinger, W.E.; Casey, M. Rapid polymer identification by in-source direct pyrolysis mass spectrometry and library searching techniques. Anal. Chem. 1996, 68, 1019–1027.
[17]  Fabbri, D. Use of pyrolysis-gas chromatography/mass spectrometry to study environmental pollution caused by synthetic polymers: A case study: The Ravenna Lagoon. J. Anal. Appl. Pyrol. 2001, 58-59, 361–370, doi:10.1016/S0165-2370(00)00170-4.
[18]  Phair, M.; Wampler, T. Analysis of rubber materials by pyrolysis GC. Rubber World 1997, 215, 30–34.
[19]  Wampler, T. Introduction to pyrolysis-capillary gas chromatography. J. Chromatogr. A 1999, 842, 207–220, doi:10.1016/S0021-9673(98)00921-2.
[20]  del Rio, J.C.; Gutierrez, A.; Gonzalez-Vila, F.J.; Martin, F. Application of pyrolysis-gas chromatography-mass spectrometry to the analysis of pitch deposits and synthetic polymers in pulp and pulp mills. J. Anal. Appl. Pyrol. 1999, 49, 165–177, doi:10.1016/S0165-2370(98)00099-0.
[21]  Watanabe, N.; Schwartz, E.; Scow, K.M.; Young, T.M. Relating desorption and biodegradation of phenanthrene to SOM structure characterized by quantitative pyrolysis GC/MS. Environ. Sci. Technol. 2005, 39, 6170–6181, doi:10.1021/es0480522.
[22]  White, D.M.; Garland, D.S.; Beyer, L.; Yoshikawa, K. Pyrolysis-GC/MS fingerprinting of environmental samples. J. Anal. Appl. Pyrol. 2004, 71, 107–118, doi:10.1016/S0165-2370(03)00101-3.
[23]  Thompson, R.; Nau, C.; Lawrence, C. Identification of vehicles tire rubber in roadway dust. Am. Ind. Hyg. Assoc. J. 1966, 27, 488–495, doi:10.1080/00028896609342461.
[24]  Cadle, S.H.; Williams, R.L. Environmental degradation of tire-wear particles. Rubber Chem. Technol. 1980, 53, 903–914, doi:10.5254/1.3535066.
[25]  Cardina, J.A. The determination of rubber in atmospheric dusts. Rubber Chem. Technol. 1973, 47, 232–241, doi:10.5254/1.3545014.
[26]  Kim, M.G.; Yagawa, K.; Inoue, H.; Lee, Y.K.; Shirai, T. Measurement of tire tread in urban air by pyrolysis-gas chromatography with flame photometric detection. Atmos. Environ. Pt. A-Gen. Top. 1990, 24, 1417–1422.
[27]  Lee, Y.-K.; Kim, M.G. Simultaneous determination of natural and styrene-butadiene rubber tire tread particles in atmospheric dusts by pyrolysis-gas chromatography. J. Anal. Appl. Pyrol. 1989, 16, 46–55.
[28]  Saito, T. Determination of styrene-butadiene and isoprene tire tread rubbers in piled particulate matter. J. Anal. Appl. Pyrol. 1989, 15, 227–235, doi:10.1016/0165-2370(89)85036-3.
[29]  Sakamoto, K.; Hirota, Y.; Nezu, T.; Tsubota, M.; Kimijima, K.; Okuama, M. Contribution of rubber dust generated from tire-dust by travelling of heavy-duty and passenger vehicles on the road to atmospheric particulate matter. J. Aerosol. Res. Jpn. 1999, 14, 242–247.
[30]  Yamaguchi, T.; Yamazaki, H.; Yamauchi, A.; Kakiuchi, Y. Analysis of tire tread rubber particles and rubber additives in airborne particulates at a roadside. Jpn. J. Toxicol. Environ. Health 1995, 41, 155–162.
[31]  Harada, M.; Shibata, T.; Panko, J.; Unice, K. Analysis Methodology of Rubber Fraction in Fine Particles. In Proceedings of the 176th Technical Meeting of the Rubber Division of the American Chemical Society, Pittsburgh, PA, USA, 13–15 October 2009.
[32]  Kitamura, Y.; Kuroiwa, C.; Harada, M.; Kato, N. Analysis of Rubber Fraction in Suspended Particulate Matter (SPM) on Road. In Proceedings of the Fall 172nd Technical Meeting of the Rubber Division of the American Chemical Society, Cleveland, OH, USA, 16–17 October 2007.
[33]  Stein, G.; Wunstel, E.; Pagaimo, W.T. Tyre Wear in Particulate Matter—An Assessment Based on a Newly Developed Measuring Method. In Proceedings of International VDI Congress, Hannover, Germany, 21 October 2009.
[34]  State of Knowledge Report for Tire Materials and Tire Wear Particles. 2008. Available online: http://www.wbcsd.org/web/projects/tire/SoKreportfinal.pdf (accessed on 21 August 2012).
[35]  de Leeuw, J.W.; de Leer, E.W.; Sinninghe Damste, J.S.; Schuyl, P.J.W. Screening of anthropogeniccompounds in polluted sediments and soils by flash evaporation/pyrolysis gas chromatography-mass spectrometry. Anal. Chem. 1986, 58, 1852–1857.
[36]  Choi, S.-S. Variation of pyrolysis pattern of polyisoprene depending on temperature. Bull. Korean Chem. Soc. 1999, 20, 1348–1350.
[37]  Choi, S.-S. Influence of silane coupling agent on pyrolysis pattern of sytrene-butadiene rubber in filled rubber compounds. Bull. Korean Chem. Soc. 2001, 22, 1145–1148.
[38]  Cadle, S.H.; Williams, R.L. Gas and particle emissions from automobile tyres in laboratory and field studies. Rubber Chem. Technol. 1978, 52, 146–158.
[39]  Pierson, W.R.; Brachaczek, W.W. Airborne particulate debris from rubber tires. Rubber. Chem. Technol. 1974, 47, 1275–1299, doi:10.5254/1.3540499.
[40]  Lee, Y.S.; Lee, W.-K.; Cho, S.-G.; Kim, I.; Ha, C.-S. Quantitative analysis of unknown compositions in ternary polymer blends: A model study on NR/SBR/BR system. J. Anal. Appl. Pyrol. 2007, 78, 85–94.
[41]  Emmission Factor Documentation for AP-42 Section 4.12. Manufacture of Rubber Products. 2008. Available online: http://www.epa.gov/ttn/chief/ap42/ch04/draft/d04s12.pdf (accessed on 23 August 2012).
[42]  California Integrated Waste Management Board. Effects of Waste Tires, Waste Tire Facilities, and waste Tire Projects on the Environment; CIWMB Publications: Sacramento, CA, USA, 1996. Available online: http://www.calrecycle.ca.gov/publications/Documents/Tires%5C43296029.pdf (accessed on 23 August 2012).
[43]  Organisation for Economic Co-operation and Development. Emission Scenario Document on Additives in Rubber Industry; OECD Publishing: Paris, France, 2004. Available online: http://search.oecd.org/officialdocuments/displaydocumentpdf/?cote=ENV/JM/MONO(2004)11&docLanguage=En (accessed on 23 August 2012).
[44]  Unice, K.; Kreider, M.; McAtee, B.; Panko, J. Evaluation of Extractable Organic Zinc as a Quantitative Marker for Tire Tread Particles in Environmental Matrices. In Technical Meeting of the Rubber Division of the American Chemical Society, Pittsburgh, PA, USA, 13–15 October 2009.
[45]  Suedel, B.C.; Rodgers, J., Jr. Development of formulated reference sediments for freshwater and estuarine sediment testing. Environ. Toxicol. Chem. 1994, 13, 1163–1175, doi:10.1897/1552-8618(1994)13[1163:DOFRSF]2.0.CO;2.
[46]  Organisation for Economic Co-operation and Development. OECD Guidlines for Testing of Chemicals Test No. 207: Earthworm, Actue Toxicity Tests; OECD Publishing: Paris, France, 1984. Available online: http://www.oecdbookshop.org/oecd/get-it.asp?REF=9720701e.pdf&TYPE=browse (accessed on 22 August 2012).
[47]  Organisation for Economic Co-operation and Development. OECD Guidlines for the Testing of Chemicals Test No.218:Sediment-Water Chironomid Toxicity Using Spiked Sediment; OECD Publishing: Paris, France, 2004. Available online: http://browse.oecdbookshop.org/oecd/pdfs/free/9721801e.pdf (accessed on 23 August 2012).
[48]  U.S. Code of Federal Regualtions. Guidance Establishing Test Procedures for the Analysis of Pollutants–Definition And Procedure for the Determination of the Method Detection Limit–Revision 1.11. Appendix B to 40 CFR Part 136. Available online: http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&sid=1b3e777916c8290f97c2fe8de2ccfb3c&rgn=div9&view=text&node=40:24.0.1.1.1.0.1.8.2&idno=40 (accessed on 23 August 2012).
[49]  Fabbri, D.; Tartari, D.; Trombini, C. Analysis of poly(vinly chloride) and other polymers in sediments and suspended matter of a coastal lagoon by pyrolysis-gas chromatography-mass spectrometry. Anal. Chim. Acta. 2000, 413, 3–11, doi:10.1016/S0003-2670(00)00766-2.
[50]  Groten, B. Application of pyrolysis-gas chromatography to polymer characterization. Anal. Chem. 1964, 36, 1206–1212, doi:10.1021/ac60213a013.
[51]  Esposito, G.G. Quantitative pyrolytic gas chromatography by internal standard. Anal. Chem. 1964, 36, 2183–2185.
[52]  Moldoveanu, S.C. Pyrolysis GC/MS, present and future (recent past and present needs). J. Microcolumn Sep. 2001, 13, 102–125, doi:10.1002/mcs.1028.
[53]  Stauffer, E. Concept of pyrolysis for fire debris analysts. Sci. Justice 2003, 43, 29–40.
[54]  Dimov, N.; Milina, R. Qualitative and quantitative analysis of random copolymers and homopolymer blends by pyrolytic gas chromatography. Poly. Sci. USSR. 1981, 23, 2696–2705, doi:10.1016/0032-3950(81)90042-3.
[55]  Tsuchii, A.; Takeda, K.; Tokiwa, Y. Degradation of the rubber in truck tires by a strain of nocardia. Biodegradation 1996, 7, 405–413.
[56]  Fabbri, D.; Chiavari, G.; Galletti, G.C. Characterization of soil humin by pyrolysis(/methylation)-gaschromatography/mass spectrometry: Structural relationships with humic acids. J. Anal. Appl. Pyrol. 1996, 37, 161–172, doi:10.1016/0165-2370(96)00943-6.
[57]  Dignac, M.-F.; Houot, S.; Francou, C.; Derenne, S. Pyrolytic study of compost and waste organic matter. Org. Geochem. 2005, 36, 1054–1071.
[58]  Riservato, M.; Rolla, A.; Davoli, E. An isotopic dilution approach for 1,3-butadiene tailpipe emission and ambient air monitoring. Rapid Commun. Mass Spectrom. 2004, 18, 399–404, doi:10.1002/rcm.1348.
[59]  Cardina, J.A. Particle size determination of tire-tread rubber in atmospheric dusts. Rubber Chem. Technol. 1974, 47, 1005–1010.
[60]  Sarkissian, G. The analysis of tire rubber traces collected after braking incidents using pyrolysis-gas chromatography/mass spectrometry. J. Forensic Sci. 2007, 52, 1050–1056, doi:10.1111/j.1556-4029.2007.00529.x.
[61]  Concise International Chemical Assessment Document No. 5. Limonene. Available online: http://www.inchem.org/documents/cicads/cicads/cicad05.htm (accessed on 23 August 2012).
[62]  SPI. Definitions of Resins—Acrylonitrile-Butadiene-Styrene (ABS). Available online: http://www.plasticsindustry.org/aboutplastics/content.cfm?itemnumber=1384&navitemnumber=1128 (accessed on 24 August 2012).
[63]  Matheson, M.; Wampler, T.; Simonsick, W., Jr. The effect of carbon-black filling on the pyrolysis behavior of natural and synthetic rubbers. J. Anal. Appl. Pyrol. 1994, 29, 129–136, doi:10.1016/0165-2370(94)00791-8.
[64]  Kloepfer, A.; Jekel, M.; Reemtsma, T. Occurance, sources, and fate of benzothiazoles in municipal wastewater treatment plants. Environ. Sci. Technol. 2005, 39, 3792–3798, doi:10.1021/es048141e.
[65]  Kumata, H.; Yamada, J.; Masuda, K.; Takada, H.; Sato, Y.; Sakurai, T.; Fujiwara, K. Benzothiazolamines as tire-derived molecular markers: Sorptive behavior in street runoff and application to source apportioning. Environ. Sci. Technol. 2002, 36, 702–708, doi:10.1021/es0155229.
[66]  Reddy, C.; Quinn, J. Environmental chemistry of benzothiazoles dervied from rubber. Environ. Sci. Technol. 1997, 31, 2847–2853.
[67]  Reemtsma, T.; Fiehn, O.; Kalnowski, G.; Jekel, M. Microbial transformations and biological effects of fungicide-derived benzothiazoles determined in industrial wastewater. Environ. Sci. Technol. 1995, 27, 478–485.
[68]  Fauser, P.; Tjell, J.C.; Mosbaek, H.; Pilegaard, K. Quantification of tire-tread particles using extractable organic zinc as tracer. Rubber Chem. Technol. 1999, 74, 969–977.
[69]  Wik, A.; Lycken, J.; Dave, G. Sediment quality assessment of road runoff detention systems in Sweden and the potential contribution of tire wear. Water Air Soil Pollut. 2008, 194, 301–314, doi:10.1007/s11270-008-9718-8.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133