全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Over-Expression of CYP2E1 mRNA and Protein: Implications of Xenobiotic Induced Damage in Patients with De Novo Acute Myeloid Leukemia with inv(16)(p13.1q22); CBFβ-MYH11

DOI: 10.3390/ijerph9082788

Keywords: CYP2E1, NQO1, AML with inv(16), de novo AML, CBFB-MYH11, benzene, xenobiotic induced damage

Full-Text   Cite this paper   Add to My Lib

Abstract:

Environmental exposure to benzene occurs through cigarette smoke, unleaded gasoline and certain types of plastic. Benzene is converted to hematotoxic metabolites by the hepatic phase-I enzyme CYP2E1, and these metabolites are detoxified by the phase-II enzyme NQO1. The genes encoding these enzymes are highly polymorphic and studies of these polymorphisms have shown different pathogenic and prognostic features in various hematological malignancies. The potential role of different cytochrome p450 metabolizing enzymes in the pathogenesis of acute myeloid leukemia (AML) in an area of active interest. In this study, we demonstrate aberrant CYP2E1 mRNA over-expression by quantitative real-time polymerase chain reaction in 11 cases of de novo AML with inv(16); CBFβ-MYH11. CYP2E1 mRNA levels correlated with CBF β -MYH11 transcript levels and with bone marrow blast counts in all cases. CYP2E1 over-expression correlated positively with NQO1 mRNA levels (R 2 = 0.934, n = 7). By immunohistochemistry, CYP2E1 protein was more frequently expressed in AML with inv(16) compared with other types of AML ( p < 0.001). We obtained serial bone marrow samples from two patients with AML with inv(16) before and after treatment. CYP2E1 mRNA expression levels decreased in parallel with CBF β -MYH11 transcript levels and blast counts following chemotherapy. In contrast, CYP1A2 transcript levels did not change in either patient. This is the first study to demonstrate concurrent over-expression of CYP2E1 and NQO1 mRNA in AML with inv(16). These findings also suggest that a balance between CYP2E1 and NQO1 may be important in the pathogenesis of AML with inv(16).

References

[1]  Huff, J. Benzene-induced cancers: Abridged history and occupational health impact. Int. J. Occup. Environ. Health 2007, 13, 213–221.
[2]  Kok, P.W.; Ong, C.N. Blood and urinary benzene determined by headspace gas chromatography with photoionization detection: Application in biological monitoring of low-level nonoccupational exposure. Int. Arch. Occup. Environ. Health 1994, 66, 195–201, doi:10.1007/BF00380780.
[3]  Brugnone, F.; Perbellini, L.; Giuliari, C.; Cerpelloni, M.; Soave, M. Blood and urine concentrations of chemical pollutants in the general population. Med. Lav. 1994, 85, 370–389.
[4]  Bennett, J.M. The Myelodysplastic Syndromes: Pathobiology and Clinical Management. In Basic and Clinical Oncology; Cheson, B., Ed.; Marcel Dekker: New York, NY, USA, 2002; Volume 27, pp. 36–40.
[5]  Smith, M.T.; Wang, Y.; Kane, E.; Rollinson, S.; Wiemels, J.L.; Roman, E.; Roddam, P.; Cartwright, R.; Morgan, G. Low NAD(P)H: Quinone oxidoreductase 1 activity is associated with increased risk of acute leukemia in adults. Blood 2001, 97, 1422–1426.
[6]  Rothman, N.; Smith, M.T.; Hayes, R.B.; Traver, R.D.; Hoener, B.; Campleman, S.; Li, G.L.; Dosemeci, M.; Linet, M.; Zhang, L. Benzene poisoning, a risk factor for hematological malignancy, is associated with the NQO1 609C→T mutation and rapid fractional excretion of chlorzoxazone. Cancer Res. 1997, 57, 2839–2842.
[7]  Aydin-Sayitoglu, M.; Hatirnaz, O.; Erensoy, N.; Ozbek, U. Role of CYP2D6, CYP1A1, CYP2E1, GSTT1, and GSTM1 genes in the susceptibility to acute leukemias. Am. J. Hematol. 2006, 81, 162–170, doi:10.1002/ajh.20434.
[8]  Zhang, J.; Yin, L.H.; Liang, G.Y.; Liu, R.; Fan, K.H.; Pu, Y.P. Detection of CYP2E1, a genetic biomarker of susceptibility to benzene metabolism toxicity in immortal human lymphocytes derived from the Han Chinese population. Biomed. Environ. Sci. 2010, 24, 300–309.
[9]  Bolufer, P.; Collado, M.; Barragan, E.; Calasanz, M.J.; Colomer, D.; Tormo, M.; González, M.; Brunet, S.; Batlle, M.; Cervera, J. Profile of polymorphisms of drug-metabolising enzymes and the risk of therapy-related leukaemia. Br. J. Haematol. 2007, 136, 590–596, doi:10.1111/j.1365-2141.2006.06469.x.
[10]  Han, X.; Zheng, T.; Foss, F.M.; Lan, Q.; Holford, T.R.; Rothman, N.; Ma, S.; Zhang, Y. Genetic polymorphisms in the metabolic pathway and non-Hodgkin lymphoma survival. Am. J. Hematol. 2010, 85, 51–56.
[11]  Ingelman-Sundberg, M.; Ekstr?m, G.; Tindberg, N. Lipid peroxidation dependent on ethanol-inducible cytochrome p-450 from rat liver. Adv. Biosci. 1988, 71, 43–47.
[12]  Weltman, M.D.; Farrell, G.C.; Hall, P.; Ingelman-Sundberg, M.; Liddle, C. Hepatic cytochrome p450 2e1 is increased in patients with nonalcoholic steatohepatitis. Hepatology 1998, 27, 128–133, doi:10.1002/hep.510270121.
[13]  Larson, R.A.; Wang, Y.; Banerjee, M.; Wiemels, J.; Hartford, C.; Beau, M.M.L.; Smith, M.T. Prevalence of the inactivating 609C→T polymorphism in the NAD(P)H: Quinone oxidoreductase (NQO1) gene in patients with primary and therapy-related myeloid leukemia. Blood 1999, 94, 803–807.
[14]  Rothman, N.; Li, G.L.; Dosemeci, M.; Bechtold, W.E.; Marti, G.E.; Wang, Y.Z.; Linet, M.; Xi, L.; Lu, W.; Smith, M.T. Hematotoxocity among Chinese workers heavily exposed to benzene. Am. J. Ind. Med. 1996, 29, 236–246, doi:10.1002/(SICI)1097-0274(199603)29:3<236::AID-AJIM3>3.0.CO;2-O.
[15]  Wiemels, J.L.; Pagnamenta, A.; Taylor, G.M.; Eden, O.B.; Alexander, F.E.; Greaves, M.F. A lack of a functional NAD(P)H: Quinone oxidoreductase allele is selectively associated with pediatric leukemias that have MLL fusions. Cancer Res. 1999, 59, 4095–4099.
[16]  Sun, X.; Zhang, W.; Ramdas, L.; Stivers, D.N.; Jones, D.M.; Kantarjian, H.M.; Estey, E.H.; Vadhan-Raj, S.; Medeiros, L.J.; Bueso-Ramos, C.E. Comparative analysis of genes regulated in acute myelomonocytic leukemia with and without Inv (16)(p13q22) using microarray techniques, real-time PCR, immunohistochemistry, and flow cytometry immunophenotyping. Mod. Pathol. 2007, 20, 811–820.
[17]  Larson, R.A.; Williams, S.F.; le Beau, M.M.; Bitter, M.A.; Vardiman, J.W.; Rowley, J.D. Acute myelomonocytic leukemia with abnormal eosinophils and inv(16) or t(16;16) has a favorable prognosis. Blood 1986, 68, 1242–1249.
[18]  Grimwade, D.; Hills, R.K.; Moorman, A.V.; Walker, H.; Chatters, S.; Goldstone, A.H.; Wheatley, K.; Harrison, C.J.; Burnett, A.K. Refinement of cytogenetic classification in acute myeloid leukemia: Determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council Trials. Blood 2010, 116, 354–365, doi:10.1182/blood-2009-11-254441.
[19]  Kanagal-Shamanna, R.; Bueso-Ramos, C.E.; Chen, S.S.; Abruzzo, L.V.; de Lima, M.J.; Sargent, R.L.; Medeiros, L.J.; Lu, G. Donor-derived isolated del (20q) after hematopoietic stem cell transplantation: Report of two cases and review of the literature. J. Hematopathol. 2011, doi:10.1007/s12308-011-0123-7.
[20]  An International System for Human Cytogenetic Nomenclature: Recommendations of the International Standing Committee on Human Cytogenetic Nomenclature; Shaffer, L.G., Slovak, M.L., Campbell, L.J., Eds.; Karger: Basel, Switzerland, 2009.
[21]  Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, 2002–2007.
[22]  Xu, M.; Li, D.; Lu, Y.; Chen, G.Q. Leukemogenic AML1-ETO fusion protein increases carcinogen-DNA adduct formation with upregulated expression of cytochrome P450-1A1 gene. Exp. Hematol. 2007, 35, 1249–1255, doi:10.1016/j.exphem.2007.04.018.
[23]  McDonald, T.A.; Holland, N.T.; Skibola, C.; Duramad, P.; Smith, M.T. Hypothesis: Phenol and hydroquinone derived mainly from diet and gastrointestinal flora activity are causal factors in leukemia. Leukemia 2001, 15, 10–20.
[24]  Smith, M.T. The mechanism of benzene-induced leukemia: A hypothesis and speculations on the causes of leukemia. Environ. Health Perspect. 1996, 104, 1219–1225.
[25]  Smith, M.T. Benzene, NQO1, and genetic susceptibility to cancer. Proc. Natl. Acad. Sci. USA 1999, 96, 7624–7626, doi:10.1073/pnas.96.14.7624.
[26]  Chattopadhyay, M.; Kodela, R.; Nath, N.; Street, C.R.; Velázquez-Martínez, C.A.; Boring, D.; Kashfi, K. Hydrogen sulfide-releasing aspirin modulates xenobiotic metabolizing enzymes in vitro and in vivo. Biochem. Pharmacol. 2012, 83, 733–740, doi:10.1016/j.bcp.2011.12.020.
[27]  Dinkova-Kostova, A.T.; Talalay, P. NAD(P)H: Quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch. Biochem. Biophys. 2010, 501, 116–123, doi:10.1016/j.abb.2010.03.019.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133