Susceptibility to chemical toxins has not been adequately addressed in risk assessment methodologies. As a result, environmental policies may fail to meet their fundamental goal of protecting the public from harm. This study examines how characterization of risk may change when susceptibility is explicitly considered in policy development; in particular we examine the process used by the U.S. Environmental Protection Agency (EPA) to set a National Ambient Air Quality Standard (NAAQS) for lead. To determine a NAAQS, EPA estimated air lead-related decreases in child neurocognitive function through a combination of multiple data elements including concentration-response (CR) functions. In this article, we present alternative scenarios for determining a lead NAAQS using CR functions developed in populations more susceptible to lead toxicity due to socioeconomic disadvantage. The use of CR functions developed in susceptible groups resulted in cognitive decrements greater than original EPA estimates. EPA’s analysis suggested that a standard level of 0.15 μg/m 3 would fulfill decision criteria, but by incorporating susceptibility we found that options for the standard could reasonably be extended to lower levels. The use of data developed in susceptible populations would result in the selection of a more protective NAAQS under the same decision framework applied by EPA. Results are used to frame discussion regarding why cumulative risk assessment methodologies are needed to help inform policy development.
References
[1]
Hattis, D.; Banati, P.; Goble, R.; Burmaster, D.E. Human interindividual variability in parameters related to health risks. Risk Anal. 1999, 19, 711–726. 10765432
[2]
Hattis, D.; Banati, P.; Goble, R. Distributions of individual susceptibility among humans for toxic effects: How much protection does the traditional tenfold factor provide for what fraction of which kinds of chemicals and effects? Ann. NY Acad. Sci. 1999, 895, 286–316, doi:10.1111/j.1749-6632.1999.tb08092.x.
[3]
Aldridge, J.E.; Gibbons, J.A.; Flaherty, M.M.; Kreider, M.L.; Romano, J.A.; Levin, E.D. Heterogeneity of toxicant response: sources of human variability. Toxicol. Sci. 2003, 76, 3–20, doi:10.1093/toxsci/kfg204. 12883075
[4]
U.S. Environmental Protection Agency (EPA). Framework for Cumulative Risk Assessment. Risk Assessment Forum. EPA/630/P-02/001F; EPA: Washington, DC, USA, 2003.
[5]
Levy, J.I. Is epidemiology the key to cumulative risk assessment? Risk Anal. 2008, 28, 1507–1513, doi:10.1111/j.1539-6924.2008.01121.x.
[6]
National Research Council (NRC). Science and Decisions: Advancing Risk Assessment; National Academies Press: Washington, DC, USA, 2009.
[7]
Sexton, K. Sociodemographic aspects of human susceptibility to toxic chemicals: Do class and race matter for realistic risk assessment? Environ. Toxicol. Pharmacol. 1997, 4, 261–269, doi:10.1016/S1382-6689(97)10020-5.
[8]
Robbins, J.M.; Vaccarino, V.; Zhang, H.; Kasl, S.V. Socioeconomic status and type 2 diabetes in African American and Non-Hispanic White women and men: Evidence from the Third National Health and Nutrition Examination Survey. Am. J. Public Health. 2001, 91, 76–83, doi:10.2105/AJPH.91.1.76. 11189829
[9]
Adler, N.E.; Newman, K. Socioeconomic disparities in health: pathways and policies. Health Aff. 2002, 21, 60–76, doi:10.1377/hlthaff.21.2.60.
[10]
Darmon, N.; Drewnowski, A. Does social class predict diet quality? Am. J. Clin. Nutr. 2008, 87, 1107–1117. 18469226
[11]
National Ambient Air Quality Standards for Lead, Final Rule; Federal Register 73; 2008; pp. 66964–67062.
[12]
Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Lead; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2007.
[13]
Bellinger, D.; Leviton, A.; Waternaux, C.; Needleman, H.; Rabinowitz, M. Low-level lead exposure, social class, and infant development. Neurotoxicol. Teratol. 1988, 10, 497–503, doi:10.1016/0892-0362(88)90084-0.
[14]
Dietrich, K.N.; Krafft, K.M.; Bornschein, R.L.; Hammond, P.B.; Berger, O.; Succop, P.A.; Bier, M. Low-level fetal lead exposure effect on neurobehavioral development in early infancy. Pediatrics 1987, 80, 721–730. 2444921
[15]
Dietrich, K.N.; Succop, P.A.; Berger, O.G.; Hammond, P.B.; Bornschein, R.L. Lead exposure and the cognitive development of urban preschool children: The Cincinnati lead study cohort at age 4 years. Neurotoxicol. Teratol. 1991, 13, 203–211, doi:10.1016/0892-0362(91)90012-L. 1710765
[16]
Tong, S.; McMichael, A.J.; Baghurst, P.A. Interactions between environmental lead exposure and sociodemographic factors on cognitive development. Arch. Environ. Health 2000, 55, 330–335, doi:10.1080/00039890009604025. 11063408
[17]
Winneke, G.; Kramer, U. Neuropsychological effects of lead in children: interactions with social background variables. Neuropsychobiology 1984, 11, 195–204, doi:10.1159/000118077. 6472605
[18]
Raab, G.M.; Thomson, G.O.B.; Boyd, L.; Fulton, M.; Laxen, D.P.H. Blood lead levels, reaction time, inspection time and ability in Edinburgh children. Br. J. Dev. Psychol. 1990, 8, 101–118, doi:10.1111/j.2044-835X.1990.tb00826.x.
[19]
Borella, P.; Sturloni, N.; Rovesti, S.; Vivoli, R.; Bargellini, A.; Vivoli, G. Evaluation of the risk of neuropsychological damage from lead exposure in childhood. Ann. Ist. Super. Sanità 1998, 34, 97–104. (in Italian). 9679346
[20]
“National primary and secondary ambient air quality standards.” Title 42 U.S. Code, Sec. 7409. , 2010pp. 6223–6224.
[21]
U.S. Environmental Protection Agency (EPA). Air Quality Criteria for Lead, Volume I of II; EPA/600/R-05/144aF; EPA: Washington, DC, USA, 2006.
[22]
U.S. Environmental Protection Agency (EPA). Lead: Human Exposure and Health Risk Assessments for Selected Case Studies. Human Exposure and Health Risk Assessments - Full-Scale, Volume I; EPA-452/R-07-014a; EPA: Washington, DC, USA, 2007.
[23]
Henderson, R. Letter from Dr. Rogene Henderson, Chair, Clean Air Scientific Advisory Committee, to Administrator Stephen L. Johnson. Re: Clean Air Scientific Advisory Committee’s (CASAC) Review of the 1st Draft Lead Staff Paper and Draft Lead Exposure and Risk Assessments. 27, March, 2007.
[24]
Brunekreef, B. The relationship between air lead and blood lead in children: A critical review. Sci. Total Environ. 1984, 38, 79–123, doi:10.1016/0048-9697(84)90210-9. 6395339
[25]
Henderson, R. Letter from Dr. Rogene Henderson, Chair, Clean Air Scientific Advisory Committee, to Administrator Stephen L. Johnson. Re: Clean Air Scientific Advisory Committee’s (CASAC) Review of the Advance Notice of Proposed Rulemaking (ANPR) for the NAAQS for Lead. 22, January, 2008.
[26]
Chari, R. Modification of Lead Toxicity by Socioeconomic Factors and Implications for Environmental Policy. Doctoral dissertation, Johns Hopkins University, Baltimore, MD, March 2011.
[27]
Harvey, P.; Hamlin, M.; Kumar, R.; Delves, T. Blood lead, behaviour, and intelligence test performance in preschool children. Sci. Total Environ. 1984, 40, 45–60, doi:10.1016/0048-9697(84)90341-3.
[28]
Dietrich, K.N.; Krafft, K.M.; Bier, M.; Succop, P.A.; Berger, O.; Bornschein, R.L. Early effects of fetal lead exposure: neurobehavioral findings at 6 months. Int. J. Biosoc. Res. 1986, 8, 151–168.
[29]
McMichael, A.J.; Baghurst, P.A.; Vimpani, G.V.; Robertson, E.F.; Wigg, N.R.; Tong, S.L. Sociodemographic factors modifying the effect of environmental lead on neuro-psychological development in early childhood. Neurotoxicol. Teratol. 1992, 14, 321–327, doi:10.1016/0892-0362(92)90038-C. 1454040
[30]
Tellez-Rojo, M.M.; Bellinger, D.C.; Arroyo-Quiroz, C.; Lamadrid-Figueroa, H.; Mercado-Garcia, A.; Schnaas-Arrieta, L.; Wright, R.O.; Hernandez-Avila, M.; Hu, H. Longitudinal associations between blood lead concentrations <10 μg/dL and neurobehavioral development in environmentally-exposed children in Mexico City. Pediatrics 2006, 118, e323–e330, doi:10.1542/peds.2005-3123. 16882776
[31]
Lanphear, B.P.; Hornung, R.; Khoury, J.; Yolton, K.; Baghurst, P.; Bellinger, D.C.; Canfield, R.L.; Dietrich, K.N.; Bornschein, R.; Greene, T.; et al. Low-level environmental lead exposure and children’s intellectual function: An international pooled analysis. Environ. Health Perspect. 2005, 113, 894–899, doi:10.1289/ehp.7688. 16002379
[32]
Canfield, R.L.; Henderson, C.R., Jr.; Cory-Slechta, D.A.; Cox, C.; Jusko, T.A.; Lanphear, B.P. Intellectual impairment in children with blood lead concentrations below 10 μg per deciliter. N. Engl. J. Med. 2003, 348, 1517–1526, doi:10.1056/NEJMoa022848. 12700371
[33]
Bellinger, D.C.; Needleman, H.L. Intellectual impairment and blood lead levels (letter). N. Engl. J. Med. 2003, 349, 500–502, doi:10.1056/NEJM200307313490515. 12892100
[34]
Bailey, A.J.; Sargent, J.D.; Goodman, D.C.; Freeman, J.; Brown, M.J. Poisoned landscapes: The epidemiology of environmental lead exposure in Massachusetts children 1990-1991. Soc. Sci. Med. 1994, 39, 757–766, doi:10.1016/0277-9536(94)90037-X. 7973872
[35]
Perlin, S.A.; Wong, D.; Sexton, K. Residential proximity to industrial sources of air pollution: Interrelationships among race, poverty, and age. J. Air Waste Manag. Assoc. 2001, 51, 406–421, doi:10.1080/10473289.2001.10464271. 11266104
[36]
Sicotte, D.; Swanson, S. Whose risk in Philadelphia? Proximity to unequally hazardous industrial facilities. Soc. Sci. Q. 2007, 88, 515–534, doi:10.1111/j.1540-6237.2007.00469.x.
[37]
U.S. Environmental Protection Agency (EPA). Integrated Risk Information System: IRIS Glossary; EPA: Washington, DC, USA, 2009.
[38]
U.S. Environmental Protection Agency (EPA). Guidelines for carcinogen risk assessment. Risk Assessment Forum; EPA/630/P-03/001F; EPA: Washington, DC, USA, 2005.
[39]
U.S. Environmental Protection Agency (EPA). Guidelines for developmental toxicity risk assessment. Risk Assessment Forum; EPA/600/FR-91/001; EPA: Washington, DC, USA, 1991.
[40]
U.S. Environmental Protection Agency (EPA). Guidelines for reproductive toxicity risk assessment. Risk Assessment Forum; EPA/630/R-96/009; EPA: Washington, DC, USA, 1996.
[41]
U.S. Environmental Protection Agency (EPA). Guidelines for neurotoxicity risk assessment. Risk Assessment Forum; EPA/630/R-95/001F; EPA: Washington, DC, USA, 1998.
[42]
Schwartz, J.; Bellinger, D.; Glass, T. Expanding the scope of environmental risk assessment to better include differential vulnerability and susceptibility. Am. J. Public Health. 2011, 101, S88–S93, doi:10.2105/AJPH.2011.300268. 22021314
[43]
National air quality standards act of 1970. (S Rpt. 91-1196); Washington: Government Printing Office, 1970.
Hattis, D.; Anderson, E.L. What should be the implications of uncertainty, variability, and inherent “biases”/“conservatism” for risk management decision-making? Risk Anal. 1999, 19, 95–107.
[46]
Krupnick, A.; Morgenstern, R.; Batz, M.; Nelson, P.; Burtraw, D.; Shih, J.S.; McWilliams, M. Not a Sure Thing: Making Regulatory Choices under Uncertainty; Resources for the Future: Washington, DC, USA, 2006.
[47]
Rodricks, J.V. Some attributes of risk influencing decision-making by public health and regulatory officials. Am. J. Epidemiol. 2001, 154, S7–S12, doi:10.1093/aje/154.12.S7. 11744524
[48]
Schwartz, J.; Bellinger, D.; Glass, T. Expanding the scope of risk assessment: Methods of studying differential vulnerability and susceptibility. Am. J. Public Health 2011, 101, S102–S109, doi:10.2105/AJPH.2011.300367. 22021313
[49]
Mahaffey, K.R. Environmental lead toxicity: Nutrition as a component of intervention. Environ. Health Perspect. 1990, 89, 75–78, doi:10.1289/ehp.908975. 2088758
[50]
Ruff, H.A.; Markowitz, M.E.; Bijur, P.E.; Rosen, J.F. Relationships among blood lead levels, iron deficiency, and cognitive development in two-year-old children. Environ. Health Perspect. 1996, 104, 180–185. 8820586
[51]
Peraza, M.A.; Ayala-Fierro, F.; Barber, D.S.; Casarez, E.; Rael, L.T. Effects of micronutrients on metal toxicity. Environ. Health Perspect. 1998, 106, 203–216. 9539014
[52]
Elmarsafawy, S.F.; Jain, N.B.; Schwartz, J.; Sparrow, D.; Nie, H.; Hu, H. Dietary calcium as a potential modifier of the relationship of lead burden to blood pressure. Epidemiology 2006, 17, 531–537, doi:10.1097/01.ede.0000231285.86968.2b. 16878040
[53]
Cory-Slechta, D.A.; Virgolini, M.B.; Thiruchelvam, M.; Weston, D.D.; Bauter, M.R. Maternal stress modulates the effects of developmental lead exposure. Environ. Health Perspect. 2004, 112, 717–730, doi:10.1289/ehp.6481. 15121516
[54]
Virgolini, M.B.; Chen, K.; Weston, D.D.; Bauter, M.R.; Cory-Slechta, D.A. Interactions of chronic lead exposure and intermittent stress: consequences for brain catecholamine systems and associated behaviors and HPA axis function. Toxicol. Sci. 2005, 87, 469–482, doi:10.1093/toxsci/kfi269. 16049266
[55]
Virgolini, M.B.; Bauter, M.R.; Weston, D.D.; Cory-Slechta, D.A. Permanent alterations in stress responsivity in female offspring subjected to combined maternal lead exposure and/or stress. Neurotoxicology 2006, 27, 11–21, doi:10.1016/j.neuro.2005.05.012. 16140384
[56]
Virgolini, M.B.; Rossi-George, A.; Lisek, R.; Weston, D.D.; Thiruchelvam, M.; Cory-Slechta, D.A. CNS effects of developmental Pb exposure are enhanced by combined maternal and offspring stress. Neurotoxicology 2008, 29, 812–827, doi:10.1016/j.neuro.2008.03.003. 18440644
[57]
Peters, J.L.; Kubzansky, L.; McNeely, E.; Schwartz, J.; Spiro 3rd, A.; Sparrow, D.; Wright, R.O.; Nie, H.; Hu, H. Stress as a potential modifier of the impact of lead levels on blood pressure: the normative aging study. Environ. Health Perspect. 2007, 115, 1154–1159, doi:10.1289/ehp.10002. 17687441
[58]
Surkan, P.J.; Schnaas, L.; Wright, R.J.; Tellez-Rojo, M.M.; Lamadrid-Figueroa, H.; Hu, H.; Hernandez-Avila, M.; Bellinger, D.C.; Schwartz, J.; Perroni, E.; et al. Maternal self-esteem, exposure to lead, and child neurodevelopment. Neurotoxicology 2008, 29, 278–285, doi:10.1016/j.neuro.2007.11.006.
[59]
Nordberg, G.F.; Jin, T.; Hong, F.; Zhang, A.; Buchet, J.P.; Bernard, A. Biomarkers of cadmium and arsenic interactions. Toxicol. Appl. Pharmacol. 2005, 206, 191–197, doi:10.1016/j.taap.2004.11.028. 15967208
[60]
de Burbure, C.; Buchet, J.P.; Leroyer, A.; Nisse, C.; Haguenoer, J.M.; Mutti, A.; Smerhovsky, Z.; Cikrt, M.; Trzcinka-Ochocka, M.; Razniewska, G.; et al. Renal and neurologic effects of cadmium, lead, mercury, and arsenic in children: Evidence of early effects and multiple interactions at environmental exposure levels. Environ. Health Perspect. 2006, 114, 584–590, doi:10.1289/ehp.114-a584. 16581550
[61]
Kim, Y.; Kim, B.N.; Hong, Y.C.; Shin, M.S.; Yoo, H.J.; Kim, J.W.; Bhang, S.Y.; Cho, S.C. Co-exposure to environmental lead and manganese affects the intelligence of school-aged children. Neurotoxicology 2009, 30, 564–571, doi:10.1016/j.neuro.2009.03.012. 19635390
[62]
Navas-Acien, A.; Tellez-Plaza, M.; Guallar, E.; Muntner, P.; Silbergeld, E.; Jaar, B.; Weaver, V. Blood cadmium and lead and chronic kidney disease in U.S. adults: A joint analysis. Am. J. Epidemiol. 2009, 170, 1156–1164, doi:10.1093/aje/kwp248.
[63]
Park, S.K.; Schwartz, J.; Weisskopf, M.; Sparrow, D.; Vokonas, P.S.; Wright, R.O.; Coull, B.; Nie, H.; Hu, H. Low-level lead exposure, metabolic syndrome, and heart rate variability: The VA Normative Aging Study. Environ. Health Perspect. 2006, 114, 1718–1724. 17107858