The measurement of cellular and sub-cellular responses to chemical contaminants (referred to as biomarkers) in living organisms represents a recent tool in environmental monitoring. The review focuses on carbonic anhydrase, a ubiquitous metalloenzyme which plays key roles in a wide variety of physiological processes involving CO 2 and HCO 3 ?. In the last decade a number of studies have demonstrated the sensitivity of this enzyme to pollutants such as heavy metals and organic chemicals in both humans and wildlife. The review analyses these studies and discusses the potentiality of this enzyme as novel biomarker in environmental monitoring and assessment.
References
[1]
Wiese, F.K.; Ryan, P.C. The extend of chronic marine oil pollution in south eastern Newfoundland waters assessed through beached bird surveys 1984–1999. Mar. Pollut. Bull. 2003, 46, 1090–1101, doi:10.1016/S0025-326X(03)00250-9.
[2]
Rios, L.M.; Moore, C.; Jones, P.R. Persistent organic pollutants carried by synthetic polymers in the ocean environment. Mar. Pollut. Bull. 2007, 54, 1230–1237, doi:10.1016/j.marpolbul.2007.03.022.
[3]
Lionetto, F.; Maffezzoli, A. Polymer characterization by ultrasonic wave propagation. Adv. Polym. Tech. 2008, 27, 63–73, doi:10.1002/adv.20124.
[4]
Lionetto, F.; Frigione, M. Mechanical and natural durability properties of wood treated with a novel organic preservative/consolidant product. Mater. Design. 2009, 30, 3303–3307, doi:10.1016/j.matdes.2008.12.010.
[5]
Depledge, M.H. The Rational Basis for the Use of Biomarkers as Ecotoxicological Tools. In Nondestructive Biomarkers in Vertebrates; Fossi, M.C., Leonzio, C., Eds.; Lewis Publishers: Boca Raton, FL, USA, 1994; pp. 271–295.
[6]
Clements, W.H. Integrating effects of contaminants across levels of biological organization: An overview. J. Aquat. Ecosyst. Stress Rec. 2000, 7, 113–116, doi:10.1023/A:1009927612391.
[7]
Depledge, M. The rational basis for detection of the early effects of marine pollutants using physiological indicators. AMBIO 1989, 18, 301–302.
[8]
McCarthy, J.F. Concluding Remarks: Implementation of a Biomarker-Based Environmental Monitoring Program. In Biomarkers of Environmental Contaminations; McCarthy, J.F., Shugart, L.R., Eds.; Lewis Publishers: Boca Raton, FL, USA, 1990; pp. 429–439.
[9]
Burgeot, T.; Bocquené, G.; Porte, C.; Dimeet, J.; Santella, R.M.; Garcia de la Parra, L.M.; Pfohl-Leszkowicz, A.; Raoux, C.; Galgani, F. Bioindicators of pollutant exposure in the Northwestern Mediterranean Sea. Mar. Ecol. Progr. Ser. 1996, 131, 125–141, doi:10.3354/meps131125.
[10]
Stien, X.; Percic, P.; Gnassia-Barelli, M.; Romeo, M.; Lafaurie, M. Evaluation of biomarkers in caged fishes and mussels to assess the quality of waters in a bay of the NW Mediterranean Sea. Environ. Pollut. 1998, 99, 339–345, doi:10.1016/S0269-7491(98)00013-X.
[11]
Lionetto, M.G.; Caricato, R.; Giordano, M.E.; Pascariello, M.F.; Marinosci, L.; Schettino, T. Integrated use of biomarkers (acetylcholinesterase and antioxidant enzymatic activities) in Mytilus galloprovincialis and Mullus barbatus in an Italian coastal marine area. Mar. Pollut. Bull. 2003, 46, 324–330, doi:10.1016/S0025-326X(02)00403-4.
[12]
Lionetto, M.G.; Caricato, R.; Giordano, M.E.; Schettino, T. .Biomarker application for the study of chemical contamination risk on marine organisms in the Taranto marine coastal area. Chem. Ecol. 2004, 20, S333–S343, doi:10.1080/02757540310001629215.
[13]
Kirby, M.F.; Morris, S.; Hurst, M.; Kirby, S.J.; Neall, P.; Tylor, T.; Fagg, A. The use of cholinesterase activity in flounder (Latichthys flexus) muscle tissue as a biomarker of neurotoxic contamination in UK estuaries. Mar. Pollut. Bull. 2000, 40, 780–791, doi:10.1016/S0025-326X(00)00069-2.
[14]
Caricato, R.; Lionetto, M.G.; Schettino, T. Seasonal variation of biomarkers in Mytilus galloprovincialis sampled inside and outside Mar Piccolo of Taranto (Italy). Chem. Ecol. 2010, 26, 143–153, doi:10.1080/02757541003627639.
[15]
Calisi, A.; Lionetto, M.G.; Schettino, T. Biomarker response in the earthworm Lumbricus terrestris exposed to chemical pollutants. Sci. Total Environ. 2011, 409, 4456–4464, doi:10.1016/j.scitotenv.2011.06.058.
[16]
Lionetto, M.G.; Caricato, R.; Erroi, E.; Giordano, M.E.; Schettino, T. Carbonic anhydrase based environmental bioassay. Int. J. Environ. An. Ch. 2005, 8, 895–903.
Esbaugh, A.J.; Tufts, B.L. The structure and function of carbonic anhydrase isozymes in the respiratory system of vertebrates. Resp. Physiol. Neurobiol. 2006, 154, 185–198, doi:10.1016/j.resp.2006.03.007.
[19]
Maffia, M.; Trischitta, F.; Lionetto, M.G.; Storelli, C.; Schettino, T. Bicarbonate absorption in eel intestine: Evidence for the presence of a membrane-bound carbonic anhydrase in the brush-border membrane of enterocyte. J. Exp. Zool. 1996, 275, 365–373, doi:10.1002/(SICI)1097-010X(19960801)275:5<365::AID-JEZ5>3.0.CO;2-N.
[20]
Tashian, R.E.; Hewett-Emmett, D.; Carter, N.D.; Bergenhem, N.C.H. Carbonic Anhydrase (CA)-Related Proteins (CA-RPs) and Transmembrane Proteins with CA or CA-RP Domains. In The Carbonic Anhydrases: New Horizons; Chegwidden, W.R., Carter, N.D., Edwards, Y.H., Eds.; Birkh?user: Basel, Switzerland, 2000; pp. 105–120.
[21]
Kimber, M.S.; Pai, E.F. The active site architecture of Pisum sativum β-carbonic anhydrase is a mirror image of that of α-carbonic anhydrases. EMBOJ. 2000, 19, 1407–1418, doi:10.1093/emboj/19.7.1407.
[22]
Alber, B.E.; Ferry, J.G. A carbonic anhydrase from the archaeon Methanosarcina thermophila. Proc. Natl. Acad. Sci. USA 1994, 91, 6909–6913, doi:10.1073/pnas.91.15.6909.
[23]
Roberts, S.B.; Lane, T.W.; Morel, F.M.M. Carbonic anhydrase in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). J. Phycol. 1997, 33, 845–850.
[24]
Tripp, B.C.; Smith, K.S.; Ferry, J.G. Carbonic anhydrase: new insights for an ancient enzyme. J. Biol. Chem. 2001, 276, 48615–48618.
[25]
Xu, Y.; Feng, L.; Jeffrey, P.D.; Shi, Y.; Morel, F.M. Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 2008, 452, 56–61.
[26]
Ivanov, B.N.; Ignatova, L.K.; Romanova, A.K. Diversity in forms and functions of carbonic anhydrase in terrestrial higher plants. Russ. J. Plant Physl. 2007, 54, 143–162, doi:10.1134/S102144370702001X.
[27]
Zhang, B.Y.; Yang, F.; Wang, G.C.; Peng, G. Cloning and quantitative analysis of the carbonic anhydrase gene from Porphyra yezoensis. J. Phycol. 2010, 46, 290–296, doi:10.1111/j.1529-8817.2009.00801.x.
[28]
Cannon, G.C.; Heinhorst, S.; Kerfeld, C.A. Carboxysomal carbonic anhydrases: Structure and role in microbial CO2 fixation. BBA-Proteins Proteom. 2010, 1804, 382–392, doi:10.1016/j.bbapap.2009.09.026.
Supuran, C.T.; Scozzafava, A. Carbonic anhydrases as targets for medicinal chemistry. Bioorg. Med. Chem. 2007, 15, 4336–4350, doi:10.1016/j.bmc.2007.04.020.
[31]
Innocenti, A.; Scozzafava, S.; Parkkila, L.; Puccetti, G.; de Simone, G.; Supuran, C.T. Investigations of the esterase, phosphatase, and sulfatase activities of the cytosolic mammalian carbonic anhydrase isoforms I, II, and XIII with 4-nitrophenyl esters as substrates. Bioorg. Med. Chem. Lett. 2008, 18, 2267–2271.
[32]
Ferry, J.F. The gamma class of carbonic anhydrases. BBA-Proteins Proteom. 2010, 1804, 374–381, doi:10.1016/j.bbapap.2009.08.026.
[33]
Lane, T.W.; Morel, F.M.M. A biological function for cadmium in marine diatoms. Proc. Natl. Acad. Sci. USA 2000, 97, 4627–4631, doi:10.1073/pnas.090091397.
[34]
Lane, T.W.; Saito, M.A.; George, G.N.; Pickering, I.J.; Prince, R.C.; Morel, F.M.M. A cadmium enzyme from a marine diatom. Nature 2005, 435, 42–42.
[35]
Park, H.; McGinn, P.J.; Morel, F.M.M. Expression of cadmium carbonic anhydrase of diatoms in seawater. Aquat. Microb. Ecol. 2008, 51, 183–193, doi:10.3354/ame01192.
[36]
de Mora, S.; Fowler, S.W.; Wyse, E.; Azemard, S. Distribution of heavy metals in marine bivalves, fish and coastal sediments in the Gulf and Gulf of Oman. Mar. Pollut. Bull. 2004, 49, 410–424, doi:10.1016/j.marpolbul.2004.02.029.
[37]
Hwang, H.; Green, P.G.; Higashi, R.M.; Young, T.M. Tidal salt marsh sediment in California, USA. Part 2: Occurrence and anthropogenic input of trace metals. Chemosphere 2006, 64, 1899–1909, doi:10.1016/j.chemosphere.2006.01.053.
[38]
Lionetto, M.G.; Vilella, S.; Trischitta, F.; Cappello, M.S.; Giordano, M.E., Schettino. Effects of CdCl2 on electrophysiological parameters in the intestine of the teleost fish, Anguilla anguilla. Aquat. Toxicol. 1998, 41, 251–264, doi:10.1016/S0166-445X(97)00084-2.
[39]
Vilella, S.; Ingrosso, L.; Lionetto, M.G.; Zonno, V.; Schettino, T.; Storelli, C. Effect of cadmium and zinc on the Na+/H+ exchanger present on the brush border membrane vesicles isolated from eel kidney tubular cells. Aquat. Toxicol. 2000, 48, 25–36, doi:10.1016/S0166-445X(99)00027-2.
[40]
Calisi, A.; Lionetto, M.G.; Sanchez-Hernandez, J.C.; Schettino, T. Effect of heavy metal exposure on blood haemoglobin concentration and methemoglobin percentage in Lumbricus terrestris. Ecotoxicology 2011, 20, 847–854, doi:10.1007/s10646-011-0641-1.
[41]
Christensen, G.M.; Tucker, J.H. Effects of selected water toxicants on the in vitro activity of fish carbonic anhydrase. Chem. Biol. Interact. 1976, 13, 181–192, doi:10.1016/0009-2797(76)90007-7.
[42]
Lionetto, M.G.; Maffia, M.; Cappello, M.S.; Giordano, M.E.; Storelli, C.; Schettino, T. Effect of cadmium on carbonic anhydrase and Na+-K+-ATPase in eel, Anguilla anguilla, intestine and gills. Comp. Biochem. Phys. A 1998, 120, 89–91.
[43]
Lionetto, M.G.; Giordano, M.E.; Vilella, S.; Schettino, T. Inhibition of eel enzymatic activities by cadmium. Aquat. Toxicol. 2000, 48, 561–571, doi:10.1016/S0166-445X(99)00056-9.
[44]
Skaggs, H.S.; Henry, R.P. Inhibition of carbonic anhydrase in the gills of two euryhaline crabs, Callinectes sapidus and Carcinus maenas, by heavy metals. Comp. Biochem. Phys.C 2002, 133, 605–612, doi:10.1016/S1095-6433(02)00192-7.
[45]
Ekinci, D.; Beydemir, ?.; Küfrevio?lu, ?.?. In vitro inhibitory effects of some heavy metals on human erytrocyte carbonic anhydrases. J. Enzym. Inhib. Med. Ch. 2007, 22, 745–750, doi:10.1080/14756360601176048.
[46]
Tu, C.; Wynns, G.C.; Silverman, D.N. Inhibition by cupric ions of 18O exchange catalyzed by human carbonic anhydrase II. Relation to the interaction between carbonic anhydrase and hemoglobin. J. Biol. Chem. 1981, 256, 9466–9470.
[47]
Lionetto, M.G.; Caricato, R.; Erroi, E.; Giordano, M.E.; Schettino, T. Potential application of carbonic anhydrase activity in bioassay and biomarker studies. Chem. Ecol. 2006, 22, S119–S125, doi:10.1080/02757540600670661.
[48]
Jernelov, A. The international mussel watch: A global assessment of environmental levels of chemical contaminants. Sci. Total Environ. 1996, 188 Suppl., 37–44, doi:10.1016/0048-9697(96)05275-8.
[49]
Soto, M.; Ireland, M.P.; Marigómez, I. Changes in mussel biometry on exposure to metals: Implications in estimation of metal bioavailability in “Mussel-Watch” programmes. Sci. Total Environ. 2000, 247, 175–187, doi:10.1016/S0048-9697(99)00489-1.
[50]
Caricato, R.; Lionetto, M.G.; Dondero, F.; Viarengo, A.; Schettino, T. Carbonic anhydrase activity in Mytilus galloprovincialis digestive gland: Sensitivity to heavy metal exposure. Comp. Biochem. Phys. C 2010, 152, 241–247.
[51]
Wang, B.; Liu, C.Q.; Wu, Y. Effect of heavy metals on the activity of external carbonic anhydrase of microalga Chlamydomonas reinhardtii and microalgae from Karst Lakes. Bull. Environ. Contam. Toxicol. 2005, 74, 227–233.
[52]
Morel, F.M.M.; Reinfelder, J.R.; Roberts, S.B.; Chamberlain, C.P.; Lee, J.G.; Yee, D. Zinc and carbon co-limitation of marine phytoplankton. Nature 1994, 369, 740–742, doi:10.1038/369740a0.
[53]
Lee, J.G.; Roberts, S.B.; Morel, F.M.M. Cadmium a nutrient for the marine diatom. Limnol. Oceanogr. 1995, 40, 1056–1063, doi:10.4319/lo.1995.40.6.1056.
[54]
Xu, Y.; Feng, L.; Jeffrey, P.D.; Shi, Y.; Morel, F.M. Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 2008, 452, 56–61.
[55]
Park, H.; Song, B.; Morel, F.M.M. Diversity of the cadmium-containing carbonic anhydrase in marine diatoms and natural waters. Environ. Microbiol. 2007, 9, 403–413, doi:10.1111/j.1462-2920.2006.01151.x.
[56]
Kolayli, S.; Karahalil, F.; Sahin, H.; Dincer, B.; Supuran, C.T. Characterization and inhibition studies of an α-carbonic anhydrase from the endangered sturgeon species Acipenser gueldenstaedti. J. Enzym. Inhib. Med. Ch. 2011, 26, 895–900, doi:10.3109/14756366.2011.554415.
[57]
Gencer, N.; Ergun, A.; Demir, D. In vitro effects of some herbicides and fungicides on human erythrocyte carbonic anhydrase activity. Fresen. Environ. Bull. 2012, 21, 549–552.
[58]
I??k, S.; Kockar, F.; Ozensoy, F.; Arslan, O. Differential in vitro effects of some pesticides on CA activities from some freshwater and seawater fish erythrocytes. Fresen. Environ. Bull. 2004, 13, 25–29.
[59]
Do?an, S. The in vitro effects of some pesticides on carbonic anhydrase activity of Oncorhynchus mykiss and Cyprinus carpiocarpio fish. J. Hazard. Mater. 2006, 132, 171–176, doi:10.1016/j.jhazmat.2005.10.006.
[60]
Ceyhun, S.B.; ?entük, M.; Erdog?n, O.; Kürevio?lu, ?.?. In vitro and in vivo effects of some pesticides on carbonic anhydrase enzyme from rainbow trout (Oncorhynchus mykiss) gills. Pestic. Biochem. Physiol. 2010, 97, 177–181, doi:10.1016/j.pestbp.2010.01.003.
[61]
Wilbur, K.M.; Andersonm, G.N. Electrometric and colorimetric determination of carbonic anhydrase. J. Biol. Chem. 1948, 176, 147–154.
[62]
Davis, R.P. The measurement of carbonic anhydrase activity. Method Biochem. Anal. 1963, 11, 307–327, doi:10.1002/9780470110294.ch7.
[63]
Vitale, A.M.; Monserrat, J.M.; Castilho, P.; Rodriguez, E.M. Inhibitory effects of cadmium on carbonic anhydrase activity and ionic regulation of the estuarine crab Chasmagnathus granulata (Decapoda, Grapsidae). Comp. Biochem. Physiol. C 1999, 122, 121–129.
[64]
Peakall, D.B. p,p'-DDT: Effect on calcium metabolism and concentration of estradiol in the blood. Science 1970, 168, 592–594.
[65]
Smolders, R.; Bervoets, L.; de Boeck, G.; Burst, R. Transplanted zebra mussels (Dreissena polymorpha) as active biomonitors in an effluent-dominated river. Environ. Toxicol. Chem. 2002, 21, 87–93.
[66]
Damiens, G.; His, E.; Gnassia-Barelli, M.; Quiniou, F.; Romeo, M. Evaluation of biomarkers in oyster larvae in natural and polluted conditions. Comp. Biochem. Physiol. C 2004, 138, 121–128.
[67]
de Andrade Brito, I.; Freire, C.A.; Yamamoto, F.Y.; de Assis, H.C.S.; Souza-Bastos, L.R.; Cestari, M.M.; de Castilhos Ghisi, N.; Prodocimo, V.; Filipak Neto, F.; de Oliveira Ribeiro, C.A. Monitoring water quality in reservoirs for human supply through multi-biomarker evaluation in tropical fish. J. Environ. Monit. 2012, 14, 615–625, doi:10.1039/c2em10461j.
[68]
Bielmyer, G.K.; Grosell, M.; Bhagooli, R.; Baker, A.C.; Langdon, C.; Gillette, P.; Capo, T.R. Differential effects of copper on three species of scleractinian corals and their algal symbionts (Symbiodinium spp.). Aquat. Toxicol. 2010, 97, 125–133, doi:10.1016/j.aquatox.2009.12.021.
[69]
Caricato, R.; Lionetto, M.G.; Schettino, T. Studio di biomarkers in mitili (Mytilus galloprovincialis) traslocati in Mar Piccolo e in Mar Grande di Taranto. Biologia Marina Mediterranea 2009, 16, 136–147.
[70]
Moore, M.N.; Simpson, M.G. Molecular and cellular physiology in environmental impact assessment. Aquat. Toxicol. 1992, 22, 313–322, doi:10.1016/0166-445X(92)90047-Q.