全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Crystals  2012 

Synthesis and Properties of 2-Alkylidene-1,3-dithiolo[4,5-d]-4,5-ethylenediselenotetrathiafulvalene Derivatives and Crystal Structures of Their Cation Radical Salts

DOI: 10.3390/cryst2020393

Keywords: molecular conductors, tetrathiafulvalene derivatives, cation radical salts, crystal structure, band calculation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tetrathiafulvalene derivatives condensed with 2-alkylidene-1,3-dithiole moiety, MeDTES (2-isopropylidene-1,3-dithiolo[4,5- d]-4,5-ethylenediselenotetrathiafulvalene), EtDTES (2-(pentan-3-ylidene)-1,3-dithiolo[4,5- d]-4,5-ethylenediselenotetrathiafulvalene), and CPDTES (2-cyclopentanylidene-1,3-dithiolo[4,5- d]-4,5-ethylenediselenotetrathiafulvalene) have been synthesized. Crystal structure analysis of MeDTES salts with Au(CN) 4 ?, ReO 4 ?, and I 3 ? and a CPDTES salt with I 3 ? reveals that the donor?anion ratios of all salts are 1:1. Band calculation of (MeDTES)[Au(CN) 4] suggests a quasi-one-dimensional Fermi surface that could be the result of the uniform stack of donor molecules. In spite of this stacking, the salt is a Mott insulator because of a large on-site Coulomb interaction U. (MeDTES)(ReO 4)(H 2O) 0.5 possesses Fermi points and exhibits semiconducting behavior with small activation energy ( E a = 0.058 eV). I 3 ? ions form disordered infinite chain in (MeDTES)(I 3)(DCE) 0.25, but those in (CPDTES)(I 3) exist as discrete ions. They show low conductivity (10 ?4?10 ?2 S cm ?1) at room temperature and the band calculation suggests that they are band insulator.

References

[1]  Ishiguro, T.; Yamaji, K.; Saito, G. Organic Superconductors, 2nd; Cardona, M., Fulde, P., von Klitzing, K., Queisser, H.-J., Eds.; Springer-Verlag: Berlin, Germany, 1998.
[2]  Williams, J.M.; Thorn, R.J.; Ferraro, J.R.; Carlson, K.D.; Geiser, U.; Wang, H.H.; Kini, A.M.; Whangbo, M.-H. Organic Superconductors (Including Fullerenes) Synthesis, Structure, Properties, and Theory; Grimes, R.N., Ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 1992.
[3]  Urayama, H.; Yamochi, H.; Saito, G.; Nozawa, K.; Sugano, T.; Kinoshita, M.; Sato, S.; Oshima, K.; Kawamoto, A.; Tanaka, J. A new ambient pressure organic superconductor based on BEDT-TTF with Tc higher than 10 K (Tc = 10.4 K). Chem. Lett. 1988, 17, 55–58.
[4]  Williams, J.M.; Kini, A.M.; Wang, H.H.; Carlson, K.D.; Geiser, U.; Montgomery, L.K.; Pyrka, G.J.; Watkins, D.M.; Kommers, J.M. From semiconductor-semiconductor transition (42 K) to the highest-Tc organic superconductor, κ-(ET)2Cu[N(CN)2]Cl (Tc = 12.5 K). Inorg. Chem. 1990, 29, 3272–3274.
[5]  Mori, T. Structural genealogy of BEDT-TTF-based organic conductors I. Parallel Molecules: β and β'' Phases. Bull. Chem. Soc. Jpn. 1998, 71, 2509–2526, doi:10.1246/bcsj.71.2509.
[6]  Mori, T. Structural genealogy of BEDT-TTF-based organic conductors II. Inclined molecules: θ, α, and κ phases. Bull. Chem. Soc. Jpn. 1999, 72, 179–197, doi:10.1246/bcsj.72.179.
[7]  Aonuma, S.; Okano, Y.; Sawa, H.; Kato, R.; Kobayashi, H. Stable molecular metals based on a novel unsymmetrical diselenadithiafulvalene. J. Chem. Soc. Chem. Commun. 1992, 1992, 1193–1195.
[8]  Misaki, Y.; Nishikawa, H.; Fujiwara, H.; Kawakami, K.; Yamabe, T.; Yamochi, H.; Saito, G. (2-Methylidene-1,3-dithiolo[4,5-d])tetrathiafulvalene (DT-TTF): New unsymmetrical TTFs condensed with 1,3-dithiol-2-ylidene moieties. J. Chem. Soc. Chem. Commun. 1992, 1992, 1408–1409.
[9]  Misaki, Y.; Taniguchi, M.; Miura, T.; Fujiwara, H.; Yamabe, T.; Kawamoto, T.; Mori, T. Structures and properties of MeDTDM salts. Adv. Mater. 1997, 9, 663–635.
[10]  Misaki, Y.; Nishikawa, H.; Yamabe, T.; Mori, T.; Inokuchi, H.; Mori, H.; Tanaka, S. Structure and Electrical Properties of MeDTET Salts. Chem. Lett. 1993, 22, 1341–1344.
[11]  Fujiwara, H.; Misaki, Y.; Taniguchi, M.; Yamabe, T.; Kawamoto, T.; Mori, T.; Mori, H.; Tanaka, S. Preparation, structures and physical properties of κ-type two-dimensional conductors based on unsymmetrical extended tetrathiafulvalene: 2-cyclopentanylidene-1,3-dithiolo[4,5-d]-4,5-ethylenedithiotetrathiafulvalene (CPDTET). J. Mater. Chem. 1998, 8, 1711–1717, doi:10.1039/a801375f.
[12]  Takimiya, K.; Otsubo, T. Selenium-containing π-conjugated compounds for electronic molecular materials. Phosphorus Sulfur Silicon Relat. Elem. 2005, 180, 873–881.
[13]  Otsubo, T.; Takimiya, K. Selenium Analogues of TTFs. In TTF Chemistry—Fundamentals and Applications of Tetrathiafulvalene: Selenium Analogues of TTFs; Yamada, J., Sugimoto, T., Eds.; Kodansha & Springer: Tokyo, Japan, 2004; pp. 119–136. Chapter 5.
[14]  Imakubo, T.; Shirahata, T.; Kibune, M.; Yoshino, H. Hybrid organic/inorganic supramolecular conductors D2[Au(CN)4] [D = diiodo(ethylenedichalcogeno)tetrachalcogenofulvalene], including a new ambient pressure superconductor. Eur. J. Inorg. Chem. 2007, 2007, 4727–4735.
[15]  Wang, H.H.; Montgomery, L.K.; Geiser, U.; Porter, L.C.; Carlson, K.D.; Ferraro, J.R.; Williams, J.M.; Cariss, C.S.; Rubinstein, R.L.; Whitworth, J.R.; et al. Syntheses, structures, selected physical properties and band electronic structures of the bis(ethylenediseleno)tetrathiafulvalene salts, (BEDSe-TTF)2X, X? = I3?, AuI2?, and IBr2?. Chem. Mater. 1989, 1, 140–148, doi:10.1021/cm00001a026.
[16]  Sakata, J.; Sato, H.; Miyazaki, A.; Enoki, T.; Okano, Y.; Kato, R. Superconductivity in new organic conductor κ-(BEDSe-TTF)2CuN(CN)2Br. Solid State Commun. 1999, 108, 377–381.
[17]  Garín, J.; Orduna, J.; Savirón, M.; Bryce, M.R.; Moore, A.J.; Morisson, V. Synthesis and characterization of functionalized ethylenediselenotetrathiafulvalenes: A comparative study with their all-sulfur analogues. Tetrahedron 1996, 52, 11063–11074.
[18]  Misaki, Y.; Ohta, T.; Higuchi, N.; Fujiwara, H.; Yamabe, T.; Mori, T.; Mori, H.; Tanaka, S. A vinylog of bis-fused tetrathiafulvalene: Novel π-electron framework for two-dimensional organic metals. J. Mater. Chem. 1995, 5, 1571–1579, doi:10.1039/jm9950501571.
[19]  Takahashi, K.; Tanioka, H.; Fueno, H.; Misaki, Y.; Tanaka, K. Preparation and characterization of novel aromatic-inserted tris-fused tetrathiafulvalenes. Chem. Lett. 2002, 31, 1002–1003.
[20]  Imakubo, T.; Shirahata, T.; Kibune, M. Synthesis, crystal structure and electrochemical properties of bis(ethylenedioxy)tetraselenafulvalene (BEDO-TSeF). Chem. Commun. 2004, 2004, 1590–1591.
[21]  Bondi, A. van der Waals volumes and radii. J. Phys. Chem. 1964, 68, 441–451.
[22]  Kistenmacher, T.J.; Phillips, T.E.; Cowan, D.O. The crystal structure of the 1:1 radical cation-radical anion salt of 2,2'-bis-l,3-dithiole (TTF) and 7,7,8,8-tetracyanoquinodimethane (TCNQ). Acta Cryst. 1974, B30, 763–768.
[23]  Mori, T.; Kobayashi, A.; Sasaki, Y.; Kobayashi, H.; Saito, G.; Inokuchi, H. The intermolecular interaction of tetrathiafulvalene and bis(ethylenedithio)tetrathiafulvalene in organic metals. Calculation of orbital overlaps and models of energy-band structures. Bull. Chem. Soc. Jpn. 1984, 57, 627–633, doi:10.1246/bcsj.57.627.
[24]  Svensson, P.H.; Kloo, L. Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems. Chem. Rev. 2003, 103, 1649–1684.
[25]  Mizuno, M.; Tanaka, J.; Harada, I. Electronic spectra and structures of polyiodide chain complexes. J. Phys. Chem. 1981, 85, 1789–1794.
[26]  Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2010.
[27]  Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian—Type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972, 56, 2257–2261.
[28]  Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100.
[29]  Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652, doi:10.1063/1.464913.
[30]  Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1998, 37, 785–789.
[31]  Burla, M.C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G.L.; Caro, L.D.; Giacovazzo, C.; Polidori, G.; Spagna, R. SIR2004: An improved tool for crystal structure determination and refinement. J. Appl. Cryst. 2005, 38, 381–388, doi:10.1107/S002188980403225X.
[32]  Burla, M.C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G.L.; de Caro, L.; Giacovazzo, C.; Polidori, G.; Siliqi, D.; Spagna, R. IL MILIONE: A suite of computer programs for crystal structure solution of proteins. J. Appl. Cryst. 2007, 40, 609–613, doi:10.1107/S0021889807010941.
[33]  Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122.
[34]  Rigaku, M. CrystalStructure, Version 4.0; Rigaku Corporation: Tokyo, Japan, 2010.
[35]  Misaki, Y. Tetrathiapentalene-based organic conductors. Sci. Technol. Adv. Mater. 2009, 10, 024301:1–024301:22.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133