CoNiCrAlY powders with similar granulometry and chemical composition, but different starting reactivity toward oxygen, were sprayed onto superalloy substrates by High Velocity Oxygen-Fuel producing coatings of similar thicknesses. After spraying, samples were maintained at 1,273 K in air for different test periods of up to 5,000 hours. Morphological, microstructural, compositional and electrochemical analyses were performed on the coated samples in order to assess the high temperature oxidation resistance provided by the two different powders. The powder with higher starting reactivity towards oxygen improves the oxidation resistance of the coated samples by producing thinner and more adherent thermally grown oxide layers.
Shillington, E.A.G.; Clarke, D.R. Spalling failure of a thermal barrier coating associated with aluminum depletion in the bond-coat. Acta Mater.?1999, 47, 1297–1305.
[3]
Brandl, W.; Grabke, H.J.; Toma, D.; Krüger, J. The oxidation behaviour of sprayed MCrAlY coatings. Surf. Coat. Technol.?1996, 86-87, 41–47.
[4]
Padture, N.; Gell, M.; Jordan, E. Thermal barrier coatings for gas-turbine engine applications. Science?2002, 296, 280–284.
[5]
Stiger, M.J.; Yanar, N.M.; Toppings, M.G.; Pettit, F.S.; Meier, G.H. Thermal barrier coatings for the 21st century. Z. Metall.?1999, 90, 1069–1078.
[6]
Clarke, D.R.; Levi, C.G. Materials design for the next generation thermal barrier coatings. Annu. Rev. Mater. Sci.?2003, 33, 383–417.
[7]
Miller, R.A. Thermal barrier coatings for aircraft engines: History and directions. J. Therm. Spray Technol.?1997, 6, 35–42.
[8]
Busso, E.P.; Lin, J.; Sakurai, S.; Nakayama, M. A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system: Part I: Model formulation. Acta Mater.?2001, 49, 1515–1528.
[9]
Chen, W.R.; Wu, X.; Marple, B.R.; Nagy, D.R.; Patnaik, P.C. TGO growth behaviour in TBCs with APS and HVOF bond coats. Surf. Coat. Technol.?2008, 202, 2677–2683.
[10]
Brandl, W.; Toma, D.; Kruger, J.; Grabke, H.J.; Matthaus, G. The oxidation behaviour of HVOF thermal-sprayed MCrAlY coatings. Surf. Coat. Technol.?1997, 94-95, 21–26.
[11]
Toma, D.; Brandl, W.; K?ster, U. Studies on the transient stage of oxidation of VPS and HVOF sprayed MCrAlY coatings. Surf. Coat. Technol.?1999, 120-121, 8–15.
[12]
Taylor, R.; Brandon, J.R.; Taylor, R.; Morrell, P. Microstructure, composition and property relationships of plasma-sprayed thermal barrier coatings. Surf. Coat. Technol.?1992, 50, 141–149.
[13]
Lugscheider, E.; Herbst, C.; Zhao, L. Parameter studies on high-velocity oxy-fuel spraying of MCrAlY coatings. Surf. Coat. Technol.?1998, 108-109, 16–23.
[14]
Di Ferdinando, M.; Fossati, A.; Lavacchi, A.; Bardi, U.; Borgioli, F.; Borri, C.; Giolli, C.; Scrivani, A. Isothermal oxidation resistance comparison between air plasma sprayed, vacuum plasma sprayed and high velocity oxygen fuel sprayed CoNiCrAlY bond coats. Surf. Coat. Technol.?2010, 204, 2499–2503.
[15]
Yuan, F.H.; Chen, Z.X.; Huang, Z.W.; Wang, Z.G.; Zhu, S.J. Oxidation behavior of thermal barrier coatings with HVOF and detonation-sprayed NiCrAlY bondcoats. Corros. Sci.?2008, 50, 1608–1617.
[16]
Fossati, A.; Di Ferdinando, M.; Lavacchi, A.; Bardi, U.; Giolli, C.; Scrivani, A. Improvement of the isothermal oxidation resistance of CoNiCrAlY coating sprayed by High Velocity Oxygen Fuel. Surf. Coat. Technol.?2010, 204, 3723–3728.
[17]
Gómez-García, J.; Rico, A.; Garrido-Maneiro, M.A.; Múnez, C.J.; Poza, P.; Utrilla, V. Correlation of mechanical properties and electrochemical impedance spectroscopy analysis of thermal barrier coatings. Surf. Coat. Technol.?2009, 204, 812–815.