To understand mechanisms for arsenic toxicity in the lung, we examined effects of sodium m-arsenite (As 3+) on microtubule (MT) assembly in vitro (0–40 μM), in cultured rat lung fibroblasts (RFL6, 0–20 μM for 24 h) and in the rat animal model (intratracheal instillation of 2.02 mg As/kg body weight, once a week for 5 weeks). As 3+ induced a dose-dependent disassembly of cellular MTs and enhancement of the free tubulin pool, initiating an autoregulation of tubulin synthesis manifest as inhibition of steady-state mRNA levels of βI-tubulin in dosed lung cells and tissues. Spindle MT injuries by As 3+ were concomitant with chromosomal disorientations. As 3+ reduced the binding to tubulin of [ 3H]N-ethylmaleimide (NEM), an -SH group reagent, resulting in inhibition of MT polymerization in vitro with bovine brain tubulins which was abolished by addition of dithiothreitol (DTT) suggesting As 3+ action upon tubulin through -SH groups. In response to As 3+, cells elevated cellular thiols such as metallothionein. Taxol, a tubulin polymerization agent, antagonized both As 3+ and NEM induced MT depolymerization. MT–associated proteins (MAPs) essential for the MT stability were markedly suppressed in As 3+-treated cells. Thus, tubulin sulfhydryls and MAPs are major molecular targets for As 3+ damage to the lung triggering MT disassembly cascades.
References
[1]
U.S. EPA. Arsenic Compounds, 2011. Available online: http://www.epa.gov/ttnatw01/hlthef/arsenic.html (accessed on 30 November 2011).
[2]
Kapaj, S.; Peterson, H.; Liber, K.; Bhattacharya, P. Human health effects from chronic arsenic poisoning—A review. J. Environ. Sci. Health Part A 2006, 41, 2399–2428, doi:10.1080/10934520600873571.
[3]
Tapio, S.; Grosche, B. Arsenic in the aetiology of cancer. Mutat. Res. 2006, 612, 215–246, doi:10.1016/j.mrrev.2006.02.001. 16574468
[4]
EPHA. World Facing Increasing Threat of Arsenic Poisoning, 2012. Available online: http://www.epha.org/a/2750 (accessed on 23 January 2012).
[5]
Dutkiewicz, T. Experimental studies on arsenic absorption routes in rats. Environ. Health Perspect. 1977, 19, 173–176, doi:10.1289/ehp.7719173. 908295
[6]
Jones, F.T. Invited review, a broad review of arsenic. Poultry Sci. 2007, 86, 2–14.
[7]
Guha Mazumder, D.N. Arsenic and non-malignant lung diseases. J Environ. Sci. Health Part A 2007, 42, 1859–1867, doi:10.1080/10934520701566926.
[8]
Rossman, T.G. Mechanism of arsenic carcinogenesis: An integrated approach. Mutat Res. 2003, 533, 37–65, doi:10.1016/j.mrfmmm.2003.07.009. 14643412
[9]
Bertolero, F.; Pozzi, G.; Sabbioni, E.; Saffiott, U. Cellular uptake and metabolic reduction of pentavalent to trivalent arsenic as determinants of cytotoxicity and morphological transformation. Carcinogenesis 1987, 8, 803–808, doi:10.1093/carcin/8.6.803. 3608077
[10]
Wang, T.C.; Jan, K.Y.; Wang, A.S.; Gurr, J.R. Trivalent arsenicals induce lipid peroxidation, protein carbonylation, and oxidative DNA damage in human urothelial cells. Mutat. Res. 2007, 615, 75–86, doi:10.1016/j.mrfmmm.2006.10.003.
[11]
Kitchin, K.T.; Wallace, K. The role of protein binding of trivalent arsenicals in arsenic carcinogenesis and toxicity. J. Inorg. Biochem. 2008, 102, 532–539, doi:10.1016/j.jinorgbio.2007.10.021. 18164070
[12]
Hughes, M.F. Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 2002, 133, 1–16, doi:10.1016/S0378-4274(02)00084-X. 12076506
[13]
Jordan, M.A.; Wilson, L. Microtutules as a target for anticancer drugs. Nat. Rev. Cancer 2004, 4, 253–265, doi:10.1038/nrc1317. 15057285
[14]
Bershadsky, A.D.; Vasiliev, J.M. Cytoskeleton; Plenum Press: New York, NY, USA, 1988.
[15]
Stanton, R.A.; Gernert, K.M.; Nettles, J.H.; Aneja, R. Drugs that target dynamic microtubules: A new molecular perspective. Med. Res. Rev. 2011, 31, 443–481, doi:10.1002/med.20242. 21381049
[16]
Li, W.; Zhao, Y.; Gantz, D.L.; Chou, I.-N. Nickel (Ni2+) enhancement of microtubule assembly is dependent on GTP function. Toxicol. Appl. Pharmacol. 2003, 193, 202–208, doi:10.1016/j.taap.2003.07.001. 14644622
[17]
Li, W.; Zhao, Y.; Chou, I.-N. Mg2+ antagonism on Ni2+-induced changes in microtubule assembly and cellular thiol homeostasis. Toxicol. Appl. Pharmacol. 1996, 136, 101–111, doi:10.1006/taap.1996.0012. 8560462
[18]
Hamel, E.; Lin, C.M.; Kenney, S.; Skehan, P.; Vaughns, J. Modulation of tubulin-nucleotide interaction by metal ions: comparison of beryllium with magnesium and initial studies with other cations. Arch. Biochem. Biophys. 1992, 295, 327–339, doi:10.1016/0003-9861(92)90525-2. 1586162
[19]
Li, W.; Zhao, Y.; Chou, I.-N. Cytoskeletal injury induced by hexavalent chromate. Toxicol. In Vitro 1992, 6, 433–444, doi:10.1016/0887-2333(92)90050-2. 20732142
[20]
Li, W.; Zhao, Y.; Chou, I.-N. Alterations in cytoskeletal protein sulfhydryls and cellular glutathione in cultured cells exposed to cadmium and nickel ions. Toxicology 1993, 77, 65–79, doi:10.1016/0300-483X(93)90138-I. 8442019
[21]
Li, W.; Chou, I.-N. Effects of sodium arsenite on the cytoskeleton and cellular glutathione in cultured cells. Toxicol. Appl. Pharmacol. 1992, 114, 132–139, doi:10.1016/0041-008X(92)90105-2. 1585365
[22]
Li, W.; Kagan, H.M.; Chou, I.-N. Alterations in cytoskeletal organization and homeostasis of cellular thiols in cadmium-resistant cells. Toxicol. Appl. Pharmacol. 1994, 126, 114–123, doi:10.1006/taap.1994.1097. 8184421
[23]
Chen, L.-J.; Zhao, Y.; Gao, S.; Chou, I.-N.; Toselli, P.; Stone, P.; Li, W. Downregulation of lysyloxidase and upregulation of cellular thiols in rat fetal lung fibroblasts treated with cigarette smoke condensate. Toxicol. Sci. 2005, 83, 372–379. 15509664
[24]
Murphy, D.B.; Heibsch, R.R. Purification of microtubule protein from beef brain and comparison of the assembly requirements for neuronal microtubules isolated from beef and hog. Anal. Biochem. 1979, 96, 225–235, doi:10.1016/0003-2697(79)90577-3. 40455
[25]
Shaw, J.P.; Chou, I.-N.; Anand, B. Rapid phosphorylation of microtubule-associated proteins through distinct mitogenic pathways. J. Biol. Chem. 1988, 263, 1459–1466. 3335553
[26]
Nogales, E. Structural insight into microtubule function. Ann. Rev. Biophys. Biomol. Struct. 2001, 30, 397–420, doi:10.1146/annurev.biophys.30.1.397.
[27]
Valko, M.; Morris, H.; Cronin, M.T. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005, 12, 1161–1208, doi:10.2174/0929867053764635. 15892631
[28]
Yan, N.; Meister, A. Amino acid sequence of rat kidney γ-glutamylcysteine synthetase. J. Biol. Chem. 1990, 265, 1588–1593. 1967255
Gerhardsson, L.; Dahlgren, E.; Eriksson, A.; Lagerkvist, B.E.; Lundstr?m, J.; Nordberg, G.F. Fatal arsenic poisoning—A case report. Scand. J. Work Environ. Health 1988, 14, 130–133, doi:10.5271/sjweh.1944. 3387961
[31]
Ratnaike, R.N. Acute and chronic arsenic toxicity. Postgrad. Med. J. 2003, 79, 391–396, doi:10.1136/pmj.79.933.391. 12897217
[32]
Britto, P.J.; Knipling, L.; McPhie, P.; Wolff, J. Thiol-disulphide interchange in tubulin: Kinetics and the effect on polymerization. Biochem. J. 2005, 389, 549–558, doi:10.1042/BJ20042118. 15743274
[33]
Luduena, R.F.; Roach, M.C. Tubulinsulfhydryl groups as probes and targets for antimitotic and antimicrotubule agents. Pharmacol. Ther. 1991, 49, 133–152, doi:10.1016/0163-7258(91)90027-J. 1852786
[34]
Bai, R.L.; Lin, C.M.; Nguyen, N.Y.; Liu, T.Y.; Hamel, E. Identification of the cysteine residue of beta-tubulin affected by the antimitotic agent 2,4-dichlorobenzyl thiocyanate, facilitated by separation of the protein subunits of tubulin by hydrophobic column chromatography. Biochemistry 1989, 28, 5606–5612, doi:10.1021/bi00439a040. 2775724
[35]
Gelfand, V.I.; Bershadsky, A.D. Microtubule dynamics: Mechanism, regulation, and function. Ann. Rev. Cell Biol. 1991, 7, 93–116, doi:10.1146/annurev.cb.07.110191.000521.
[36]
Guha Mazumder, D.N. Chronic arsenic toxicity & human health. Indian J. Med. Res. 2008, 128, 436–447. 19106439
[37]
Qian, Y.; Castranova, V.; Shi, X. New perspectives in arsenic-induced cell signal transduction. J. Inorg. Biochem. 2003, 96, 271–278, doi:10.1016/S0162-0134(03)00235-6. 12888263
[38]
Lee, C.F.; Liu, C.Y.; Hsieh, R.H.; Wei, Y.H. Oxidative stress-induced depolymerization of microtubules and alteration of mitochondrial mass in human cells. Ann. NY Acad. Sci. 2005, 1042, 246–254, doi:10.1196/annals.1338.027. 15965069
[39]
Jiang, G.; Gong, Z.; Li, X.-F.; Cullen, W.R.; Le, X.C. Interaction of trivalent arsenicals with metallothionein. Chem. Res. Toxicol. 2003, 16, 873–880, doi:10.1021/tx034053g. 12870890
[40]
Scott, N.; Hatlelid, K.M.; Mackenzie, N.E.; Carter, D.E. Reactions of arsenic (III) and arsenic (V) species with glutathione. Chem. Res. Toxicol. 1993, 6, 102–106, doi:10.1021/tx00031a016. 8448339
[41]
Giedroc, D.P.; Chen, X.; Apuy, J.L. Metal response element (MRE)-binding transcription factor-1 (MTF-1): Structure, function, and regulation. Antioxid. Redox Signal. 2001, 3, 577–596, doi:10.1089/15230860152542943.
[42]
Hesketh, J.E. Zinc-stimulated microtubule assembly and evidence for zinc binding to tubulin. Int. J. Biochem. 1982, 14, 983–990, doi:10.1016/0020-711X(82)90059-3. 7141075
[43]
Copple, I.M.; Goldring, C.E.; Kitteringham, N.; Park, B.K. The Nrf2-Keap1 defence pathway: Role in protection against drug-induced toxicity. Toxicology 2008, 246, 24–33, doi:10.1016/j.tox.2007.10.029. 18083283
[44]
Li, Y.M.; Broome, J.D. Arsenic targets tubulins to induce apoptosis in myeloid leukemia cells. Cancer Res. 1999, 59, 776–780. 10029061
[45]
Elie-Caille, C.; Severin, F.; Helenius, J.; Howard, J.; Muller, D.J. Straight GDP-tubulinprotofilaments form in the presence of taxol. Curr. Biol. 2007, 17, 1765–1770, doi:10.1016/j.cub.2007.08.063. 17919908
[46]
Rao, S.; He, L.; Chakravarty, S.; Ojima, I.; Orr, G.A.; Horwitz, S.B. Characterization of the taxol binding site on the microtubule. Identification of Arg(282) in beta-tubulin as the site of photoincorporation of a 7-benzophenone analogue of taxol. J. Biol. Chem. 1999, 274, 37990–37994, doi:10.1074/jbc.274.53.37990. 10608867
[47]
Schiff, P.B.; Fant, J.; Horwitz, S.B. Promotion of microtubule assembly in vitro by taxol. Nature 1979, 277, 665–667, doi:10.1038/277665a0.
[48]
Solomon, F. Direct identification of microtubule-associated proteins by selective extraction of cultured cells. Methods Enzymol. 1986, 134, 139–147. 3821557
[49]
Bloom, G.S.; Vallee, R.B. Association of microtubule-associated protein 2 (MAPs) with microtubules and intermediate filaments in cultured brain cells. J. Cell Biol. 1983, 96, 1523–1531, doi:10.1083/jcb.96.6.1523. 6343400
[50]
Drubin, D.G.; Kirschner, M.W. Tau protein function in living cells. J. Cell Biol. 1986, 103, 2739–2746, doi:10.1083/jcb.103.6.2739. 3098742
[51]
Ookata, K.; Hisanaga, S.; Bulinski, J.C.; Murofushi, H.; Aizawa, H.; Itoh, T.J.; Hotani, H.; Okumura, E.; Tachibana, K. Cyclin B interaction with microtubule-associated protein 4 (MAP4) targets p34cdc2 kinase to microtubules and is a potential regulator of M-phase microtubule dynamics. J. Cell Biol. 1995, 128, 849–862, doi:10.1083/jcb.128.5.849. 7876309
Warr, T.J.; Parry, E.M.; Parry, J.M. A comparison of two in vitro mammalian cell cytogenetic assays for the detection of mitotic aneuploidy using 10 known or suspected aneugens. Mutat. Res. 1993, 287, 29–46, doi:10.1016/0027-5107(93)90143-4.
[56]
Natarajan, A.T. An overview of the results of testing of known or suspected aneugens using mammalian cells in vitro. Mutat. Res. 1993, 287, 113–118, doi:10.1016/0027-5107(93)90150-E. 7683377
[57]
Chi, Y.H.; Jeang, K.T. Aneuploidy and cancer. J. Cell Biochem. 2007, 102, 531–538, doi:10.1002/jcb.21484. 17661351
[58]
Kligerman, A.D.; Doerr, C.; Tennant, A.H. Oxidation and methylation status determine the effects of arsenic on the mitotic apparatus. Mol. Cell. Biochem. 2005, 279, 113–121, doi:10.1007/s11010-005-8283-3. 16283520
[59]
Ramírez, P.; Eastmond, D.; Laclette, J.P.; Ostrosky-Wegman, P. Disruption of microtubule assembly and spindle formation as a mechanism for the induction of aneuploid cells by sodium arsenite and vanadium pentoxide. Mutat. Res. 1997, 386, 291–298, doi:10.1016/S1383-5742(97)00018-5. 9219566