全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evaluation of the Removal of Indicator Bacteria from Domestic Sludge Processed by Autothermal Thermophilic Aerobic Digestion (ATAD)

DOI: 10.3390/ijerph7093422

Keywords: domestic sludge, safety, pathogen detection and inactivation, ATAD treatment efficiency, mobile element inactivation, SXT/R391, DNases

Full-Text   Cite this paper   Add to My Lib

Abstract:

The degradation of sludge solids in an insulated reactor during Autothermal Thermophilic Aerobic Digestion (ATAD) processing results in auto-heating, thermal treatment and total solids reduction, however, the ability to eliminate pathogenic organisms has not been analysed under large scale process conditions. We evaluated the ATAD process over a period of one year in a two stage, full scale Irish ATAD plant established in Killarney and treating mixed primary and secondary sludge, by examining the sludge microbiologically at various stages during and following ATAD processing to determine its ability to eliminate indicator organisms. Salmonella spp. (pathogen) and fecal-coliform (indicator) densities were well below the limits used to validate class A biosolids in the final product. Enteric pathogens present at inlet were deactivated during the ATAD process and were not detected in the final product using both traditional microbial culture and molecular phylogenetic techniques. A high DN ase activity was detected in the bulk sludge during the thermophilic digestion stage which may be responsible for the rapid turn over of DNA from lysed cells and the removal of mobile DNA. These results offer assurance for the safe use of ATAD sludge as a soil supplement following processing.

References

[1]  Feachem, RG; Bradley, DJ; Garelick, H; Mara, DD. Sanitation and Disease: Health Aspects of Excreta and Wastewater Management; John Wiley and Sons: Chichester, UK, 1983.
[2]  Miguéns, JL; Mendes, JF. Travel and tourism: into a complex network. Physica A?2008, 387, 1, doi:10.1016/j.physa.2007.08.035.
[3]  Tchobanogluous, G; Burton, FL. Wastewater Engineering: Treatment, Disposal, and Reuse; Irwin/McGraw-Hill: Boston, MA, USA, 1991.
[4]  Kelly, HG; Melcer, H; Mavinic, DS. Autothermal thermophilic aerobic digestion of municipal sludges: A one-year, full-scale demonstration project. Water Environ. Res?1993, 657, 849–861.
[5]  Autothermal Thermophilic Aerobic Digestion of Municipal Wastewater Sludge. Report EPA/625/10-90/007;; US Environmental Protection Agency: Washington, DC, USA, 1990.
[6]  Kelly, HG. Emerging processes in biosolids treatment. J. Environ. Eng. Sci?2006, 5, 175–186, doi:10.1139/s05-025.
[7]  LaPara, TM; Alleman, JE. Thermophilic aerobic biological wastewater treatment. Water Res?1999, 33, 895–908, doi:10.1016/S0043-1354(98)00282-6.
[8]  Piterina, AV; MacCusland, C; Bartlett, J; Pembroke, JT. Microbial ecology of auto-thermal aerobic digestion (ATAD): Diversity, dynamics and activity of bacterial communities involved in treatment of a municipal wastewater’. In Recent Advances in Applied Microbiology; Understanding and Exploiting Microbes and Their Interactions Biological, Physical, Chemical and Engineering Aspects; Formatex: Badajos, Spain, 2006; pp. 210–221.
[9]  Layden, NM; Mavinic, DS; Kelly, HG; Moles, R; Bartlett, J. Autothermal thermophilic aerobic digestion (ATAD)—Part I: Review of origins, design, and process operation. J. Environ. Eng. Sci?2007, 6, 665–678, doi:10.1139/S07-015.
[10]  Layden, N; Kelly, H; Mavinic, D; Moles, R; Bartlett, J. Autothermal thermophilic aerobic digestion (ATAD)—Part II: Review of research and full-scale operating experiences. J. Environ. Eng. Sci?2007, 6, 679–690, doi:10.1139/S07-040.
[11]  LaPara, TM; Nakatsu, CH; Pantea, L; Alleman, JE. Phylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater. Appl. Environ. Microbiol?2000, 66, 3951–3959, doi:10.1128/AEM.66.9.3951-3959.2000. 10966414
[12]  EU Sludge Directive, Available online: http://ec.europa.eu/environment/waste/sludge/index.htm (accessed on 1 August 2010).
[13]  Codes for Good Practise; Department of the Environment and Local Government & Department of Agriculture and Food and EPA: Dublin, Ireland, 1994. Available online: http://www.environ.ie/en/Publications/Environment/Water/FileDownLoad,17228,en.pdf (accessed on 1 August 2010).
[14]  Ugwuanyi, JO; Harvey, LM; Mcneil, B. Effect of process temperature, pH and suspended solids content upon pasteurization of a model agricultural waste during thermophilic aerobic digestion. J. Appl. Microbiol?1999, 87, 387–395, doi:10.1046/j.1365-2672.1999.00831.x. 10540241
[15]  Zabranska, J; Dohanyos, M; Jenicek, P; Ruzicikova, H; Vranova, A. Efficiency of autothermal thermophilic aerobic digestion and thermophilic anaerobic digestion of municipal wastewater sludge in removing Salmonella spp. and indicator bacteria. Water Sci. Technol?2003, 47, 151–156. 12830954
[16]  Watanabe, H. Inactivation of pathogenic bacteria under mesophilic and thermophilic conditions. Water Sci. Tech?1997, 36, 25–32.
[17]  Strauch, D. Pathogenic micro-organisms in sludge. Anaerobic digestion and disinfection methods to make sludge usable as a fertiliser. Eur. Water Manage?1998, 1, 12–26.
[18]  Ayres, RM; Mara, DD. Analysis of Wastewater for Use in Agriculture: A Laboratory Manual of Parasitological and Bacteriological Techniques; WHO: Geneva, Switzerland, 1996.
[19]  Standard Methods for the Examination of Water and Wastewater, 19th ed ed.; American Public Health Association: Washington, DC, USA, 1995.
[20]  Carrington, EG; Davis, RD; Hall, JE; Pike, EB; Smith, SR; Unwin, RJ. Review of the scientific evidence relating to the controls on agricultural use of sewage sludge. In Report DETR4415/3 [part1] and Report DETR 4454/4; WRC Publications: Medmenham, UK, 1998.
[21]  Gerba, CP; Pepper, IL; Whitehead, LF. A risk assessment of emerging pathogens of concern in the land application of biosolids. Water Sci. Technol?2002, 46, 225–230. 12523758
[22]  Sidhu, J; Gibbs, RA; Ho, GE; Unkovich, I. Selection of Salmonella typhimurium as an indicator for pathogen regrowth potential in composted biosolids. Lett. Appl. Microbiol?1999, 29, 303–307. 10664970
[23]  Zaleski, KJ; Josephson, KL; Gerba, CP; Pepper, IL. Potential regrowth and recolonization of salmonellae and indicators in biosolids and biosolid-amended soil. Appl. Environ. Microbiol?2005, 71, 3701–8708, doi:10.1128/AEM.71.7.3701-3708.2005. 16000779
[24]  Russ, CF; Yanko, WA. Factors affecting salmonella’s repopulation in composted sludges. Appl. Environ. Microbiol?1981, 41, 597–602. 7224626
[25]  Pflug, IJ; Holcomb, RG; Gomez, MM. Principles of the thermal destruction of microorganisms. In Disinfection, Sterilization and Preservation, 5th ed; Block, SS, Ed.; Lippincott, Williams and Wilkins: Philadelphia, PA, USA, 2001; pp. 79–129.
[26]  Moats, WA; Dabbah, R; Edwards, VM. Interpretation of nonlogarithmic survivor curves of heated bacteria. J. Food Sci?1971, 36, 523–526, doi:10.1111/j.1365-2621.1971.tb06406.x.
[27]  Doyle, ME; Mazzotta, AS. Review of studies on the thermal resistance of Salmonellae. J. Food Prot?2000, 63, 779–795. 10852574
[28]  Chiruta, J; Davey, KR; Thomas, CJ. Thermal inactivation kinetics of three vegetative bacteria as influenced by combined temperature and pH in a liquid medium. Food Bioprod. Process?1997, 75, 174–180, doi:10.1205/096030897531522.
[29]  Smith, MG. Survival of E. coli and Salmonella after chilling and freezing in liquid media. J. Food Sci?1995, 60, 509–512, doi:10.1111/j.1365-2621.1995.tb09814.x.
[30]  Spinks, AT; Dunstan, RH; Harrison, T; Coombes, P; Kuczera, G. Thermal inactivation of water-borne pathogenic and indicator bacteria at sub-boiling temperatures. Water Res?2006, 40, 1326–1332, doi:10.1016/j.watres.2006.01.032. 16524613
[31]  Sharma, S; Sachdeva, P; Virdi, JS. Emerging water-borne pathogens. Appl. Microbiol. Biotechnol?2003, 61, 424–428. 12684849
[32]  Godfree, A; Farrell, J. Processes for managing pathogens. J. Environ. Qual?2005, 34, 105–113, doi:10.2134/jeq2005.0105. 15647539
[33]  Hay, JC. Pathogen destruction and biosolids compost. Biocycle?1996, 37, 67–77.
[34]  United States Environmental Protection Agency; 40 CFR Part 503. Standards for the use or disposal of sewage sludge. Fed Regist?1994, 58, 9248–9415.
[35]  Finkel, SE; Kolter, R. DNA as a nutrient: novel role for bacterial competence gene homologs. J. Bacteriol?2001, 183, 6288–6293, doi:10.1128/JB.183.21.6288-6293.2001. 11591672
[36]  Nielsen, KM; Johnsen, PJ; Bensasson, D; Daffonchio, D. Release and persistence of extracellular DNA in the environment. Environ .Safety Res?2007, 61, 37–53.
[37]  Chen, I; Dubnau, D. DNA uptake during bacterial transformation. Nat. Rev. Microbiol?2004, 3, 241–249.
[38]  Dubnau, D. DNA uptake in bacteria. Annu. Rev. Microbiol?1999, 53, 217–244, doi:10.1146/annurev.micro.53.1.217. 10547691
[39]  Weiss, MS; Abele, U; Weckesser, J; Welte, W; Schiltz, E; Schulz, GE. Molecular architecture and electrostatic properties of a bacterial porin. Science?1991, 254, 1627–1630, doi:10.1126/science.1721242. 1721242
[40]  Paul, JH; Jeffrey, WH; Deflaun, MF. Dynamics of extracellular DNA in the marine environment. Appl. Environ. Microbiol?1987, 53, 170–179. 3827244
[41]  Burns, R. Enzymes in the Environment: Activity, Ecology and Applications; CRS Press, Taylor and Francis Group: New York, NY, USA, 2002.
[42]  Aardema, BW; Lorenz, MG; Krumbein, WE. Protection of sediment-adsorbed transforming DNA against enzymatic inactivation. Appl. Environ. Microbiol?1983, 46, 417–420. 16346365
[43]  Buchanan, JT; Simpson, AJ; Aziz, RK; Liu, GY; Kristian, SA; Kotb, M; Feramisco, J; Nizet, V. DNase expression allows the pathogen group a Streptococcus to escape killing in neutrophil extracellular traps. Curr. Biol?2006, 16, 396–400, doi:10.1016/j.cub.2005.12.039. 16488874
[44]  Citak, S; Varlik, O; Gundogan, N. Slime production and DNase activity of Spaphylococci isolated from raw milk. J. Food Saf?2007, 23, 281–288.
[45]  Kneitel, JM; Chase, JM. Trade-offs in community ecology: linking spatial scales and species coexistence. Ecol. Lett?2004, 7, 69–80, doi:10.1046/j.1461-0248.2003.00551.x.
[46]  Ruiz, TR; Andrews, TR; Smith, GB. Identification and characterization of nuclease activities in anaerobic environmental samples. Can. J. Microbiol?2000, 46, 736–740, doi:10.1139/w00-049. 10941520
[47]  Ni, H. Bacteria learn antibiotic resistance in the sludge. Drug discov.Today?2003, 8, 10–11.
[48]  Coughter, JP; Stewart, GJ. Genetic exchange in the environment. Antonie Leeuwenhoek?1989, 55, 15–22, doi:10.1007/BF02309615. 2662898
[49]  Redfield, RJ. Genes for breakfast: The have-your-cake-and-eat-it-too of bacterial transformation. J. Hered?1993, 84, 400–404. 8409360
[50]  White, PA; McIver, CJ; Rawlinson, WD. Integrons and gene cassettes in the Enterobacteriaceae. Antimicrob. Agents Chemother?2001, 45, 2658–2661, doi:10.1128/AAC.45.9.2658-2661.2001. 11502548
[51]  Moura, A; Henriques, I; Ribeiro, R; Correia, A. Prevalence and characterization of integrons from bacteria isolated from a slaughterhouse wastewater treatment plant. J. Antimicrob. Chemother?2007, 60, 1243–1250, doi:10.1093/jac/dkm340. 17913715
[52]  da Costa, PM; Vaz-Pires, P; Bernardo, F. Antimicrobial resistance in Enterococcus spp. isolates in inflow, effluent and sludge from municipal sewage waste treatment plants. Water Res?2006, 40, 1735–1740, doi:10.1016/j.watres.2006.02.025. 16603222
[53]  Schwartz, T; Kohnen, W; Janses, B. Detection of antibiotic resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol. Ecol?2003, 43, 325–335, doi:10.1111/j.1574-6941.2003.tb01073.x. 19719664
[54]  Tennstedt, T; Szczepanowski, R; Braun, S. Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewater treatment plant. FEMS Microbiol. Ecol?2003, 45, 239–252, doi:10.1016/S0168-6496(03)00164-8. 19719593
[55]  McPherson, P; Gealt, MA. Isolation of indigenous wastewater bacterial strains capable of mobilizing plasmid pBR325. Appl. Environ. Microbiol?1986, 51, 904–909. 3524455
[56]  Lorenz, MG; Wackernagel, W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev?1994, 58, 563–602. 7968924
[57]  Levy, SB. The challenge of antibiotic resistance. Sci. Am?1998, 278, 32–39.
[58]  Lindberg, RH; Bj?rklund, K; Rendahl, P. Environmental risk assessment of antibiotics in the Swedish environment with emphasis on sewage treatment plants. Water Res?2007, 41, 613–619, doi:10.1016/j.watres.2006.11.014. 17187841
[59]  Schwarzenlander, C; Averhoff, B. Characterization of DNA transport in the thermophilic. bacterium Thermus thermophilus HB27. FEBS?2006, 273, 4210–4218, doi:10.1111/j.1742-4658.2006.05416.x.
[60]  Layden, N. An evaluation of autothermal thermophilic aerobic digestion (ATAD) of municipal slugde in Ireland. J. Environ. Eng. Sci?2007, 6, 19–29, doi:10.1139/s06-038.
[61]  Frydrych, I; Dziworska, G; Bilska, J. Comparative analysis of the thermal insulation properties of fabrics made of natural and man-made cellulose fibres. Fibres Text East Eur?2002, 10/12, 40–44.
[62]  Pereira-Neto, JT; Stentiford, EI; Smith, DV. Survival of faecal indicator micro-organisms in refuse/sludge composting using the aerated static pile system. Waste Manage. Res?1986, 4, 397–406, doi:10.1177/0734242X8600400158.
[63]  Plym-Forshell, L. Survival of salmonellas and Ascaris suum eggs in a thermophilic biogas plant. Acta veter. Scand?1995, 36, 79–85.
[64]  Shuval, H; Jodice, R; Consiglio, M; Spaggiarri, G; Spigoni, C. Control of enteric micro-organisms by aerobic-thermophilic co-composting of wastewater sludge and agro-industry wastes. Water Sci Technol?1991, 24, 401–405.
[65]  Soares, HM; Cardenas, B; Weir, D; Switzenbaum, MS. Evaluating pathogen regrowth in biosolids compost. BioCycle?1995, 36, 70–74.
[66]  Holmes, B; Willcox, WR; Lapage, SP. Identification of Enterobacteriaceae by the API 20E system. J. Clin. Pathol?1978, 31, 22–30, doi:10.1136/jcp.31.1.22. 342546
[67]  Nubel, U; Engelen, B; Felske, A; Snaidr, J; Wieshuber, A; Amann, RI; Ludwig, W; Backhaus, H. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol?1996, 178, 5636–5643. 8824607
[68]  Fisher, MM; Triplett, EW. Automated approaches for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl. Environ. Microbiol?1999, 65, 4630–4636. 10508099
[69]  Nagpal, ML; Fox, KF; Fox, A. Utility of 16S-23S rRNA spacer region methodology: how similar are interspace regions within a genome and between strains for closely related organisms? J. Microbiol. Meth?1998, 33, 211–219, doi:10.1016/S0167-7012(98)00054-2.
[70]  Yu, Z; Mohn, W. Bacterial Diversity and Community Structure in an Aerated Lagoon Revealed by Ribosomal Intergenic Spacer Analyses and 16S Ribosomal DNA Sequencing. Appl. Environ. Microbiol?2001, 67, 1565–1574, doi:10.1128/AEM.67.4.1565-1574.2001. 11282606
[71]  Scheinert, P; Krausse, R; Ullman, U; Soller, R; Krupp, G. Molecular differentiation of bacteria by PCR amplification of the 16S-23S rRNA spacer. J. Microbiol. Methods?1996, 26, 103–117, doi:10.1016/0167-7012(96)00901-3.
[72]  Sambrook, J; Fritschi, EF; Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1989.
[73]  McGrath, BM; O’Halloran, JA; Piterina, AV; Pembroke, JT. Molecular tools to detect the IncJ elements: A family of integrating, antibiotic resistant mobile genetic elements. J. Microbiol. Methods?2006, 66, 32–42, doi:10.1016/j.mimet.2005.10.004. 16316703
[74]  Piterina, AV; Bartlett, J; Pembroke, JT. Molecular Analysis of Bacterial Community DNA in Sludge Undergoing Autothermal Thermophilic Aerobic Digestion (ATAD): Pitfalls and Improved Methodology to Enhance Diversity Recovery. Diversity?2010, 2, 505–526, doi:10.3390/d2040505.
[75]  Sanger, F; Nicken, S; Couslon, AR. DNA sequencing with chain-terminating inhibitors. Biotechnol?1992, 24, 104–108.
[76]  Altschul, SF; Madden, TL; Schaffer, AA; Zhang, J; Zhang, Z; Miller, W; Lipman, DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res?1997, 25, 3389–3402, doi:10.1093/nar/25.17.3389. 9254694
[77]  Stackebrandt, E; Goebel, BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species in bacteriology. Int. J. Syst. Bacteriol?1994, 44, 846–849, doi:10.1099/00207713-44-4-846.
[78]  Drancourt, M; Bollet, C; Carlioz, A; Martelin, R; Gayral, JP; Raoult, D. 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J. Clin. Microbiol?2000, 38, 3623–3630. 11015374
[79]  Randolph, MK; William, J. Fate of pathogens in thermophilic aerobic sludge digestion. Wat. Res?1982, 16, 1051–1060, doi:10.1016/0043-1354(82)90041-0.
[80]  Golueke, CG. When is compost “safe”? In The Art and Science of Composting; JG Press, Inc: Emmaus, PL, USA, 1991; pp. 220–229.
[81]  Dumontet, S; Dinel, H; Baloda, SB. Pathogen reduction in sewage sludge by composting and other biological treatments: A review. Biol. Agr. Hortic?1999, 16, 409–430, doi:10.1080/01448765.1999.9755243.
[82]  Emerson, KR; Lund, RE; Thurston, RV. Aqueous ammonia equilibrium calculations: Effects of pH and temperature. J. Fish. Res. Board Can?1975, 32, 2379–2383, doi:10.1139/f75-274.
[83]  Park, GW; Diez-Gonzalez, F. Utilization of carbonate and ammonia based treatments to eliminate Escherichia coli O157:H7 and Salmonella 42 Typhimurium DT104 from cattle manure. J. Appl. Microbiol?2003, 94, 675–685, doi:10.1046/j.1365-2672.2003.01899.x. 12631203
[84]  Mendez, JM; Jimenez, BE; Barrios, JA. Improved alkaline stabilization of municipal wastewater sludge. Water Sci. Technol?2002, 46, 139–146. 12523745
[85]  Mendez, JM; Jimenez, B; Maya, C. Disinfection kinetics of pathogens in physicochemical sludge treated with ammonia. Water Sci. Technol?2004, 50, 67–74. 15685981
[86]  Ottoson, J; Nordin, A; von Rosen, D; Vinner?s, B. Salmonella reduction in manure by the addition of urea and ammonia. Bioresource. Technol?2007, 99, 1610–1615.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133