全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Human Blood Concentrations of Cotinine, a Biomonitoring Marker for Tobacco Smoke, Extrapolated from Nicotine Metabolism in Rats and Humans and Physiologically Based Pharmacokinetic Modeling

DOI: 10.3390/ijerph7093406

Keywords: physiologically based biokinetic modeling, cytochrome P450, simulation, no-observed-adverse-effect level, biomonitoring, human liver microsomes

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present study defined a simplified physiologically based pharmacokinetic (PBPK) model for nicotine and its primary metabolite cotinine in humans, based on metabolic parameters determined in vitro using relevant liver microsomes, coefficients derived in silico, physiological parameters derived from the literature, and an established rat PBPK model. The model consists of an absorption compartment, a metabolizing compartment, and a central compartment for nicotine and three equivalent compartments for cotinine. Evaluation of a rat model was performed by making comparisons with predicted concentrations in blood and in vivo experimental pharmacokinetic values obtained from rats after oral treatment with nicotine (1.0 mg/kg, a no-observed-adverse-effect level) for 14 days. Elimination rates of nicotine in vitro were established from data from rat liver microsomes and from human pooled liver microsomes. Human biomonitoring data (17 ng nicotine and 150 ng cotinine per mL plasma 1 h after smoking) from pooled five male Japanese smokers (daily intake of 43 mg nicotine by smoking) revealed that these blood concentrations could be calculated using a human PBPK model. These results indicate that a simplified PBPK model for nicotine/cotinine is useful for a forward dosimetry approach in humans and for estimating blood concentrations of other related compounds resulting from exposure to low chemical doses.

References

[1]  Collins, FS; Gray, GM; Bucher, JR. Toxicology. Transforming environmental health protection. Science?2008, 319, 906–907, doi:10.1126/science.1154619. 18276874
[2]  Toxicity Testing in the 21st Century: A Vision and a Strategy; The National Academies Press: Washington, DC, USA, 2007.
[3]  Hayes, KR; Bradfield, CA. Advances in toxicogenomics. Chem. Res. Toxicol?2005, 18, 403–414, doi:10.1021/tx0496690. 15777080
[4]  Edwards, SW; Preston, RJ. Systems biology and mode of action based risk assessment. Toxicol. Sci?2008, 106, 312–318, doi:10.1093/toxsci/kfn190. 18791183
[5]  Wild, CP. Complementing the genome with an “exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidem. Biomarker. Prev?2005, 14, 1847–1850, doi:10.1158/1055-9965.EPI-05-0456.
[6]  Clewell, HJ; Gentry, PR; Covington, TR; Sarangapani, R; Teeguarden, JG. Evaluation of the potential impact of age- and gender-specific pharmacokinetic differences on tissue dosimetry. Toxicol. Sci?2004, 79, 381–393, doi:10.1093/toxsci/kfh109. 15056818
[7]  Guengerich, FP. Cytochrome P450 and chemical toxicology. Chem. Res. Toxicol?2008, 21, 70–83, doi:10.1021/tx700079z. 18052394
[8]  Robinson, DE; Balter, NJ; Schwartz, SL. A physiologically based pharmacokinetic model for nicotine and cotinine in man. J. Pharmacok. Biopharm?1992, 20, 591–609, doi:10.1007/BF01064421.
[9]  Benowitz, NL; Hukkanen, J; Jacob, P, III. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb. Exp. Pharmacol?2009, 192, 29–60. 19184645
[10]  Benowitz, NL. Pharmacology of nicotine: addiction and therapeutics. Annu. Rev. Pharmacol. Toxicol?1996, 36, 597–613, doi:10.1146/annurev.pa.36.040196.003121. 8725403
[11]  Kume, A; Kume, T; Masuda, K; Shibuya, F; Yamazaki, H. Dose-dependent effects of cigarette smoke on blood biomarkers in healthy Japanese volunteers: Observations from smoking and non-smoking. J. Health Sci?2009, 55, 259–264, doi:10.1248/jhs.55.259.
[12]  Rose, JE; Behm, FM; Westman, EC; Coleman, RE. Arterial nicotine kinetics during cigarette smoking and intravenous nicotine administration: Implications for addiction. Drug Alcohol Depend?1999, 56, 99–107, doi:10.1016/S0376-8716(99)00025-3. 10482401
[13]  Hukkanen, J; Jacob, P, III; Benowitz, NL. Metabolism and disposition kinetics of nicotine. Pharmacol. Rev?2005, 57, 79–115, doi:10.1124/pr.57.1.3. 15734728
[14]  Kwon, JT; Nakajima, M; Chai, S; Yom, YK; Kim, HK; Yamazaki, H; Shon, DR; Yamamoto, T; Kuroiwa, Y; Yokoi, T. Nicotine metabolism and CYP2A6 allele frequencies in Koreans. Pharmacogenetics?2001, 11, 317–323, doi:10.1097/00008571-200106000-00006. 11434509
[15]  Nakajima, M; Kwon, JT; Tanaka, N; Zenta, T; Yamamoto, Y; Yamamoto, H; Yamazaki, H; Yamamoto, T; Kokoiwa, Y; Yokoi, T. Relationship between interindividual differences in nicotine metabolism and CYP2A6 genetic polymorphism in humans. Clin. Pharmacol. Ther?2001, 69, 72–78, doi:10.1067/mcp.2001.112688. 11180041
[16]  Feng, S; Kapur, S; Sarkar, M; Muhammad, R; Mendes, P; Newland, K; Roethig, HJ. Respiratory retention of nicotine and urinary excretion of nicotine and its five major metabolites in adult male smokers. Toxicol. Lett?2007, 173, 101–106, doi:10.1016/j.toxlet.2007.06.016. 17716838
[17]  Roethig, HJ; Munjal, S; Feng, S; Liang, Q; Sarkar, M; Walk, RA; Mendes, PE. Population estimates for biomarkers of exposure to cigarette smoke in adult U.S. cigarette smokers. Nicotine Tob. Res?2009, 11, 1216–1225, doi:10.1093/ntr/ntp126. 19700523
[18]  Nagano, T; Shimizu, M; Kiyotani, K; Kamataki, T; Takano, R; Murayama, N; Shono, F; Yamazaki, H. Biomonitoring of urinary cotinine concentrations associated with plasma levels of nicotine metabolites after daily cigarette smoking in a male Japanese population. Int. J. Environ. Res. Public Health?2010, 7, 2953–2964, doi:10.3390/ijerph7072953. 20717551
[19]  Benowitz, NL. Clinical pharmacology of nicotine: Implications for understanding, preventing, and treating tobacco addiction. Clin. Pharmacol. Ther?2008, 83, 531–541, doi:10.1038/clpt.2008.3. 18305452
[20]  Tricker, AR. Nicotine metabolism, human drug metabolism polymorphisms, and smoking behaviour. Toxicology?2003, 183, 151–173, doi:10.1016/S0300-483X(02)00513-9. 12504349
[21]  Ribeiro, EB; Bettiker, RL; Bogdanov, M; Wurtman, RJ. Effects of systemic nicotine on serotonin release in rat brain. Brain Res?1993, 621, 311–318, doi:10.1016/0006-8993(93)90121-3. 8242344
[22]  Yamazaki, H; Shimizu, M; Nagashima, T; Minoshima, M; Murayama, N. Rat cytochrome P450 2C11 in liver microsomes involved in oxidation of anesthetic agent propofol and deactivated by prior treatment with propofol. Drug Metab. Dispos?2006, 34, 1803–1905, doi:10.1124/dmd.106.011627. 16896062
[23]  Robinson, DE; Balter, NJ; Schwartz, SL. A physiologically based pharmacokinetic model for nicotine and cotinine in man. J. Pharmacok. Biopharm?1992, 20, 591–609, doi:10.1007/BF01064421.
[24]  Omura, T; Sato, R. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem?1964, 239, 2370–2378. 14209971
[25]  Murayama, N; Kaneko, N; Horiuchi, K; Ohyama, K; Shimizu, M; Ito, K; Yamazaki, H. Cytochrome P450-dependent drug oxidation activity of liver microsomes from Microminipigs, a possible new animal model for humans in non-clinical studies. Drug Metab. Pharmacokinet?2009, 24, 404–408, doi:10.2133/dmpk.24.404. 19745566
[26]  Yamazaki, H; Mimura, M; Sugahara, C; Shimada, T. Catalytic roles of rat and human cytochrome P450 2A enzymes in testosterone 7α- and coumarin 7-hydroxylations. Biochem. Pharmacol?1994, 48, 1524–1527, doi:10.1016/0006-2952(94)90579-7. 7945454
[27]  Yamazaki, H; Nakamura, M; Komatsu, T; Ohyama, K; Hatanaka, N; Asahi, S; Shimada, N; Guengerich, FP; Shimada, T; Nakajima, M; Yokoi, T. Roles of NADPH-P450 reductase and apo- and holo-cytochrome b5 on xenobiotic oxidations catalyzed by 12 recombinant human cytochrome P450s expressed in membranes of Escherichia coli. Protein Expr. Purif?2002, 24, 329–337, doi:10.1006/prep.2001.1578. 11922748
[28]  Yamanaka, H; Nakajima, M; Nishimura, K; Yoshida, R; Fukami, T; Katoh, M; Yokoi, T. Metabolic profile of nicotine in subjects whose CYP2A6 gene is deleted. Eur. J. Pharm. Sci?2004, 22, 419–425, doi:10.1016/j.ejps.2004.04.012. 15265511
[29]  Yamazaki, H; Inoue, K; Hashimoto, M; Shimada, T. Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes. Arch. Toxicol?1999, 73, 65–70, doi:10.1007/s002040050588. 10350185
[30]  Plowchalk, DR; Andersen, ME; deBethizy, JD. A physiologically based pharmacokinetic model for nicotine disposition in the Sprague-Dawley rat. Toxicol. Appl. Pharmacol?1992, 116, 177–188, doi:10.1016/0041-008X(92)90297-6. 1412462
[31]  Kato, M; Shitara, Y; Sato, H; Yoshisue, K; Hirano, M; Ikeda, T; Sugiyama, Y. The quantitative prediction of CYP-mediated drug interaction by physiologically based pharmacokinetic modeling. Pharm. Res?2008, 25, 1891–1901, doi:10.1007/s11095-008-9607-2. 18483837
[32]  Emoto, C; Murayama, N; Rostami-Hodjegan, A; Yamazaki, H. Utilization of estimated physicochemical properties as an integrated part of predicting hepatic clearance in the early drug-discovery stage: Impact of plasma and microsomal binding. Xenobiotica?2009, 39, 227–235, doi:10.1080/00498250802668863. 19280521
[33]  Howard, LA; Micu, AL; Sellers, EM; Tyndale, RF. Low doses of nicotine and ethanol induce CYP2E1 and chlorzoxazone metabolism in rat liver. J. Pharmacol. Exp. Ther?2001, 299, 542–550. 11602665
[34]  Yue, J; Khokhar, J; Miksys, S; Tyndale, RF. Differential induction of ethanol-metabolizing CYP2E1 and nicotine-metabolizing CYP2B1/2 in rat liver by chronic nicotine treatment and voluntary ethanol intake. Eur. J. Pharmacol?2009, 609, 88–95, doi:10.1016/j.ejphar.2009.03.015. 19285975
[35]  Naritomi, Y; Terashita, S; Kimura, S; Suzuki, A; Kagayama, A; Sugiyama, Y. Prediction of human hepatic clearance from in vivo animal experiments and in vitro metabolic studies with liver microsomes from animals and humans. Drug Metab. Dispos?2001, 29, 1316–1324. 11560875
[36]  Kyerematen, GA; Taylor, LH; deBethizy, JD; Vesell, ES. Pharmacokinetics of nicotine and 12 metabolites in the rat. Application of a new radiometric high performance liquid chromatography assay. Drug Metab. Dispos?1988, 16, 125–129. 2894940
[37]  Benowitz, NL; Jacob, P, III. Nicotine and cotinine elimination pharmacokinetics in smokers and nonsmokers. Clin. Pharmacol. Ther?1993, 53, 316–323, doi:10.1038/clpt.1993.27. 8453850
[38]  Fagerstrom, K. The nicotine market: An attempt to estimate the nicotine intake from various sources and the total nicotine consumption in some countries. Nicotine Tob. Res?2005, 7, 343–350, doi:10.1080/14622200500124875. 16085502
[39]  Rose, JE; Mukhin, AG; Lokitz, SJ; Turkington, TG; Herskovic, J; Behm, FM; Garg, S; Garg, PK. Kinetics of brain nicotine accumulation in dependent and nondependent smokers assessed with PET and cigarettes containing 11C-nicotine. Proc. Natl. Acad. Sci. USA?2010, 107, 5190–5195, doi:10.1073/pnas.0909184107. 20212132
[40]  Poulin, P; Theil, FP. Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution. J. Pharm. Sci?2002, 91, 129–156, doi:10.1002/jps.10005. 11782904
[41]  Amidon, GL; Sinko, PJ; Fleisher, D. Estimating human oral fraction dose absorbed: A correlation using rat intestinal membrane permeability for passive and carrier-mediated compounds. Pharm. Res?1988, 5, 651–654, doi:10.1023/A:1015927004752. 3244618

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133