The development of an animal model of human immunodeficiency virus type 1 (HIV-1)/AIDS that is suitable for preclinical testing of antiretroviral therapy, vaccines, curative strategies, and studies of pathogenesis has been hampered by the human-specific tropism of HIV-1. Although simian immunodeficiency virus (SIV) or HIV-1/SIV chimeric viruses (SHIVs)-rhesus macaque models are excellent surrogates for AIDS research, the genetic differences between SIV or SHIV and HIV-1 limit their utility as model systems. The identification of innate retroviral restriction factors has increased our understanding about blockades to HIV-1 replication in macaques and provided a guide for the construction of macaque-tropic HIV-1 clones. However, while these viruses replicate in macaque cells in vitro, they are easily controlled and have not caused AIDS in host animals, indicating that we may not fully understand the restrictive barriers of innate immunity. In this review, we discuss recent findings regarding HIV-1 restriction factors, particularly as they apply to cross-species transmission of primate lentiviruses and the development of a macaque model of HIV-1/AIDS.
References
[1]
Keele, B.F.; Jones, J.H.; Terio, K.A.; Estes, J.D.; Rudicell, R.S.; Wilson, M.L.; Li, Y.; Learn, G.H.; Beasley, T.M.; Schumacher-Stankey, J.; et al. Increased mortality and aids-like immunopathology in wild chimpanzees infected with sivcpz. Nature 2009, 460, 515–519, doi:10.1038/nature08200. 19626114
Gao, F.; Bailes, E.; Robertson, D.L.; Chen, Y.; Rodenburg, C.M.; Michael, S.F.; Cummins, L.B.; Arthur, L.O.; Peeters, M.; Shaw, G.M.; et al. Origin of Hiv-1 in the chimpanzee pan troglodytes troglodytes. Nature 1999, 397, 436–4414, doi:10.1038/17130. 9989410
[4]
Keele, B.F.; Van Heuverswyn, F.; Li, Y.; Bailes, E.; Takehisa, J.; Santiago, M.L.; Bibollet-Ruche, F.; Chen, Y.; Wain, L.V.; Liegeois, F.; et al. Chimpanzee reservoirs of pandemic and nonpandemic hiv-1. Science 2006, 313, 523–526, doi:10.1126/science.1126531. 16728595
[5]
Plantier, J.C.; Leoz, M.; Dickerson, J.E.; De Oliveira, F.; Cordonnier, F.; Lemee, V.; Damond, F.; Robertson, D.L.; Simon, F. A new human immunodeficiency virus derived from gorillas. Nat. Med. 2009, 15, 871–872, doi:10.1038/nm.2016. 19648927
[6]
Bailes, E.; Gao, F.; Bibollet-Ruche, F.; Courgnaud, V.; Peeters, M.; Marx, P.A.; Hahn, B.H.; Sharp, P.M. Hybrid origin of siv in chimpanzees. Science 2003, 300, 1713, doi:10.1126/science.1080657. 12805540
[7]
Sauter, D.; Schindler, M.; Specht, A.; Landford, W.N.; Munch, J.; Kim, K.A.; Votteler, J.; Schubert, U.; Bibollet-Ruche, F.; Keele, B.F.; et al. Tetherin-driven adaptation of vpu and nef function and the evolution of pandemic and nonpandemic hiv-1 strains. Cell Host Micr. 2009, 6, 409–421, doi:10.1016/j.chom.2009.10.004.
[8]
Gaddis, N.C.; Sheehy, A.M.; Ahmad, K.M.; Swanson, C.M.; Bishop, K.N.; Beer, B.E.; Marx, P.A.; Gao, F.; Bibollet-Ruche, F.; Hahn, B.H.; et al. Further investigation of simian immunodeficiency virus vif function in human cells. J. Virol. 2004, 78, 12041–12046, doi:10.1128/JVI.78.21.12041-12046.2004. 15479843
[9]
Kratovac, Z.; Virgen, C.A.; Bibollet-Ruche, F.; Hahn, B.H.; Bieniasz, P.D.; Hatziioannou, T. Primate lentivirus capsid sensitivity to trim5 proteins. J. Virol. 2008, 82, 6772–6777, doi:10.1128/JVI.00410-08. 18417575
[10]
Lim, E.S.; Malik, H.S.; Emerman, M. Ancient adaptive evolution of tetherin shaped the functions of vpu and nef in human immunodeficiency virus and primate lentiviruses. J. Virol. 2010, 84, 7124–7134, doi:10.1128/JVI.00468-10.
[11]
Hirsch, V.M.; Olmsted, R.A.; Murphey-Corb, M.; Purcell, R.H.; Johnson, P.R. An african primate lentivirus (sivsm) closely related to hiv-2. Nature 1989, 339, 389–392, doi:10.1038/339389a0. 2786147
[12]
Chen, Z.; Telfier, P.; Gettie, A.; Reed, P.; Zhang, L.; Ho, D.D.; Marx, P.A. Genetic characterization of new west african simian immunodeficiency virus sivsm: Geographic clustering of household-derived siv strains with human immunodeficiency virus type 2 subtypes and genetically diverse viruses from a single feral sooty mangabey troop. J. Virol. 1996, 70, 3617–3627. 8648696
[13]
Santiago, M.L.; Range, F.; Keele, B.F.; Li, Y.; Bailes, E.; Bibollet-Ruche, F.; Fruteau, C.; Noe, R.; Peeters, M.; Brookfield, J.F.; et al. Simian immunodeficiency virus infection in free-ranging sooty mangabeys (cercocebus atys atys) from the tai forest, cote d'ivoire: Implications for the origin of epidemic human immunodeficiency virus type 2. J. Virol. 2005, 79, 12515–12527, doi:10.1128/JVI.79.19.12515-12527.2005. 16160179
[14]
Allan, J.S.; Short, M.; Taylor, M.E.; Su, S.; Hirsch, V.M.; Johnson, P.R.; Shaw, G.M.; Hahn, B.H. Species-specific diversity among simian immunodeficiency viruses from african green monkeys. J. Virol. 1991, 65, 2816–2828. 2033656
[15]
Muller, M.C.; Saksena, N.K.; Nerrienet, E.; Chappey, C.; Herve, V.M.; Durand, J.P.; Legal-Campodonico, P.; Lang, M.C.; Digoutte, J.P.; Georges, A.J.; et al. Simian immunodeficiency viruses from central and western africa: Evidence for a new species-specific lentivirus in tantalus monkeys. J. Virol. 1993, 67, 1227–1235. 8437214
[16]
VandeWoude, S.; Apetrei, C. Going wild: Lessons from naturally occurring t-lymphotropic lentiviruses. Clin. Microbiol. Rev. 2006, 19, 728–762, doi:10.1128/CMR.00009-06.
[17]
Hirsch, V.M.; Dapolito, G.A.; Goldstein, S.; McClure, H.; Emau, P.; Fultz, P.N.; Isahakia, M.; Lenroot, R.; Myers, G.; Johnson, P.R. A distinct african lentivirus from sykes' monkeys. J. Virol. 1993, 67, 1517–1528. 8382307
[18]
Daniel, M.D.; Letvin, N.L.; King, N.W.; Kannagi, M.; Sehgal, P.K.; Hunt, R.D.; Kanki, P.J.; Essex, M.; Desrosiers, R.C. Isolation of t-cell tropic htlv-iii-like retrovirus from macaques. Science 1985, 228, 1201–1204, doi:10.1126/science.3159089. 3159089
Kestler, H.W., 3rd; Naidu, Y.N.; Kodama, T.; King, N.W.; Daniel, M.D.; Li, Y.; Desrosiers, R.C. Use of infectious molecular clones of simian immunodeficiency virus for pathogenesis studies. J. Med. Primatology 1989, 18, 305–309.
[21]
Naidu, Y.M.; Kestler, H.W., 3rd; Li, Y.; Butler, C.V.; Silva, D.P.; Schmidt, D.K.; Troup, C.D.; Sehgal, P.K.; Sonigo, P.; Daniel, M.D.; et al. Characterization of infectious molecular clones of simian immunodeficiency virus (sivmac) and human immunodeficiency virus type 2: Persistent infection of rhesus monkeys with molecularly cloned sivmac. J. Virol. 1988, 62, 4691–4696. 2846880
[22]
Benveniste, R.E.; Morton, W.R.; Clark, E.A.; Tsai, C.C.; Ochs, H.D.; Ward, J.M.; Kuller, L.; Knott, W.B.; Hill, R.W.; Gale, M.J.; et al. Inoculation of baboons and macaques with simian immunodeficiency virus/mne, a primate lentivirus closely related to human immunodeficiency virus type 2. J. Virol. 1988, 62, 2091–2101. 3285032
[23]
Lewis, M.G.; Zack, P.M.; Elkins, W.R.; Jahrling, P.B. Infection of rhesus and cynomolgus macaques with a rapidly fatal siv (sivsmm/pbj) isolate from sooty mangabeys. AIDS Res. Hum. Retroviruses 1992, 8, 1631–1639, doi:10.1089/aid.1992.8.1631.
[24]
Kestler, H.W., 3rd; Ringler, D.J.; Mori, K.; Panicali, D.L.; Sehgal, P.K.; Daniel, M.D.; Desrosiers, R.C. Importance of the nef gene for maintenance of high virus loads and for development of aids. Cell 1991, 65, 651–662, doi:10.1016/0092-8674(91)90097-I.
[25]
Whatmore, A.M.; Cook, N.; Hall, G.A.; Sharpe, S.; Rud, E.W.; Cranage, M.P. Repair and evolution of nef in vivo modulates simian immunodeficiency virus virulence. J. Virol. 1995, 69, 5117–5123. 7609080
[26]
Gibbs, J.S.; Lackner, A.A.; Lang, S.M.; Simon, M.A.; Sehgal, P.K.; Daniel, M.D.; Desrosiers, R.C. Progression to aids in the absence of a gene for vpr or vpx. J. Virol. 1995, 69, 2378–2383. 7884883
[27]
Lang, S.M.; Weeger, M.; Stahl-Hennig, C.; Coulibaly, C.; Hunsmann, G.; Muller, J.; Muller-Hermelink, H.; Fuchs, D.; Wachter, H.; Daniel, M.M.; et al. Importance of vpr for infection of rhesus monkeys with simian immunodeficiency virus. J. Virol. 1993, 67, 902–912. 8380472
[28]
Kimata, J.T. Hiv-1 fitness and disease progression: Insights from the siv-macaque model. Curr. HIV Res. 2006, 4, 65–77, doi:10.2174/157016206775197628.
[29]
Belshan, M.; Kimata, J.T.; Brown, C.; Cheng, X.; McCulley, A.; Larsen, A.; Thippeshappa, R.; Hodara, V.; Giavedoni, L.; Hirsch, V.; et al. Vpx is critical for sivmne infection of pigtail macaques. Retrovirology 2012, 9, 32, doi:10.1186/1742-4690-9-32.
[30]
Hirsch, V.M.; Sharkey, M.E.; Brown, C.R.; Brichacek, B.; Goldstein, S.; Wakefield, J.; Byrum, R.; Elkins, W.R.; Hahn, B.H.; Lifson, J.D.; et al. Vpx is required for dissemination and pathogenesis of siv(sm) pbj: Evidence of macrophage-dependent viral amplification. Nat. Med. 1998, 4, 1401–1408, doi:10.1038/3992. 9846578
[31]
Ambrose, Z.; KewalRamani, V.N.; Bieniasz, P.D.; Hatziioannou, T. Hiv/aids: In search of an animal model. Trends Biotechnol. 2007, 25, 333–337, doi:10.1016/j.tibtech.2007.05.004.
[32]
Human Retroviruses and Aids: A Compilation and Analysis of Nucleic acid and Amino Acid Sequences; Myers, G.B., Rabson, A.B., Smith, T.F., Wong-Staal, F., Eds.; Theoretical Biology and Biophysics Group T- 10, K7 10, Los Alamos National Laboratory: Los Alamos, NM, USA, 1990.
[33]
Isaka, Y.; Sato, A.; Kawauchi, S.; Suyama, A.; Miki, S.; Hayami, M.; Fujiwara, T. Construction of the chimeric reverse transcriptase of simian immunodeficiency virus sensitive to nonnucleoside reverse transcriptase inhibitor. Microbiol. Immunol. 1998, 42, 195–202. 9570285
[34]
Ambrose, Z.; Boltz, V.; Palmer, S.; Coffin, J.M.; Hughes, S.H.; Kewalramani, V.N. In vitro characterization of a simian immunodeficiency virus-human immunodeficiency virus (hiv) chimera expressing hiv type 1 reverse transcriptase to study antiviral resistance in pigtail macaques. J. Virol. 2004, 78, 13553–13561, doi:10.1128/JVI.78.24.13553-13561.2004. 15564466
Shibata, R.; Kawamura, M.; Sakai, H.; Hayami, M.; Ishimoto, A.; Adachi, A. Generation of a chimeric human and simian immunodeficiency virus infectious to monkey peripheral blood mononuclear cells. J. Virol. 1991, 65, 3514–3520. 2041078
[37]
Yuste, E.; Sanford, H.B.; Carmody, J.; Bixby, J.; Little, S.; Zwick, M.B.; Greenough, T.; Burton, D.R.; Richman, D.D.; Desrosiers, R.C.; et al. Simian immunodeficiency virus engrafted with human immunodeficiency virus type 1 (hiv-1)-specific epitopes: Replication, neutralization, and survey of hiv-1-positive plasma. J. Virol. 2006, 80, 3030–3041, doi:10.1128/JVI.80.6.3030-3041.2006. 16501112
[38]
Luciw, P.A.; Pratt-Lowe, E.; Shaw, K.E.; Levy, J.A.; Cheng-Mayer, C. Persistent infection of rhesus macaques with t-cell-line-tropic and macrophage-tropic clones of simian/human immunodeficiency viruses (shiv). Proc. Natl. Acad. Sci. USA 1995, 92, 7490–7494, doi:10.1073/pnas.92.16.7490. 7638218
[39]
Reimann, K.A.; Li, J.T.; Veazey, R.; Halloran, M.; Park, I.W.; Karlsson, G.B.; Sodroski, J.; Letvin, N.L. A chimeric simian/human immunodeficiency virus expressing a primary patient human immunodeficiency virus type 1 isolate env causes an aids-like disease after in vivo passage in rhesus monkeys. J. Virol. 1996, 70, 6922–6928. 8794335
[40]
Joag, S.V.; Li, Z.; Foresman, L.; Stephens, E.B.; Zhao, L.J.; Adany, I.; Pinson, D.M.; McClure, H.M.; Narayan, O. Chimeric simian/human immunodeficiency virus that causes progressive loss of cd4+ t cells and aids in pig-tailed macaques. J. Virol. 1996, 70, 3189–3197. 8627799
[41]
Harouse, J.M.; Gettie, A.; Tan, R.C.; Blanchard, J.; Cheng-Mayer, C. Distinct pathogenic sequela in rhesus macaques infected with ccr5 or cxcr4 utilizing shivs. Science 1999, 284, 816–819, doi:10.1126/science.284.5415.816. 10221916
[42]
Tan, R.C.; Harouse, J.M.; Gettie, A.; Cheng-Mayer, C. In vivo adaptation of shiv(sf162): Chimeric virus expressing a nsi, ccr5-specific envelope protein. J. Med. Primatology 1999, 28, 164–168, doi:10.1111/j.1600-0684.1999.tb00265.x.
[43]
Song, R.J.; Chenine, A.L.; Rasmussen, R.A.; Ruprecht, C.R.; Mirshahidi, S.; Grisson, R.D.; Xu, W.; Whitney, J.B.; Goins, L.M.; Ong, H.; et al. Molecularly cloned shiv-1157ipd3n4: A highly replication- competent, mucosally transmissible r5 simian-human immunodeficiency virus encoding hiv clade c env. J. Virol. 2006, 80, 8729–8738, doi:10.1128/JVI.00558-06. 16912320
[44]
Shibata, R.; Igarashi, T.; Haigwood, N.; Buckler-White, A.; Ogert, R.; Ross, W.; Willey, R.; Cho, M.W.; Martin, M.A. Neutralizing antibody directed against the hiv-1 envelope glycoprotein can completely block hiv-1/siv chimeric virus infections of macaque monkeys. Nat. Med. 1999, 5, 204–210, doi:10.1038/5568.
[45]
Nishimura, Y.; Igarashi, T.; Haigwood, N.L.; Sadjadpour, R.; Donau, O.K.; Buckler, C.; Plishka, R.J.; Buckler-White, A.; Martin, M.A. Transfer of neutralizing igg to macaques 6 h but not 24 h after shiv infection confers sterilizing protection: Implications for hiv-1 vaccine development. Proc. Natl. Acad. Sci. USA 2003, 100, 15131–15136, doi:10.1073/pnas.2436476100. 14627745
[46]
Mascola, J.R.; Stiegler, G.; VanCott, T.C.; Katinger, H.; Carpenter, C.B.; Hanson, C.E.; Beary, H.; Hayes, D.; Frankel, S.S.; Birx, D.L.; et al. Protection of macaques against vaginal transmission of a pathogenic hiv-1/siv chimeric virus by passive infusion of neutralizing antibodies. Nat. Med. 2000, 6, 207–210, doi:10.1038/72318. 10655111
[47]
Baba, T.W.; Liska, V.; Hofmann-Lehmann, R.; Vlasak, J.; Xu, W.; Ayehunie, S.; Cavacini, L.A.; Posner, M.R.; Katinger, H.; Stiegler, G.; et al. Human neutralizing monoclonal antibodies of the igg1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat. Med. 2000, 6, 200–206, doi:10.1038/72309. 10655110
[48]
Amara, R.R.; Villinger, F.; Altman, J.D.; Lydy, S.L.; O'Neil, S.P.; Staprans, S.I.; Montefiori, D.C.; Xu, Y.; Herndon, J.G.; Wyatt, L.S.; et al. Control of a mucosal challenge and prevention of aids by a multiprotein DNA/mva vaccine. Science 2001, 292, 69–74, doi:10.1126/science.1058915. 11393868
[49]
Matano, T.; Kano, M.; Nakamura, H.; Takeda, A.; Nagai, Y. Rapid appearance of secondary immune responses and protection from acute cd4 depletion after a highly pathogenic immunodeficiency virus challenge in macaques vaccinated with a DNA prime/sendai virus vector boost regimen. J. Virol. 2001, 75, 11891–11896, doi:10.1128/JVI.75.23.11891-11896.2001. 11689672
[50]
Lederman, M.M.; Veazey, R.S.; Offord, R.; Mosier, D.E.; Dufour, J.; Mefford, M.; Piatak, M., Jr.; Lifson, J.D.; Salkowitz, J.R.; Rodriguez, B.; et al. Prevention of vaginal shiv transmission in rhesus macaques through inhibition of ccr5. Science 2004, 306, 485–487, doi:10.1126/science.1099288. 15486300
[51]
Uberla, K.; Stahl-Hennig, C.; Bottiger, D.; Matz-Rensing, K.; Kaup, F.J.; Li, J.; Haseltine, W.A.; Fleckenstein, B.; Hunsmann, G.; Oberg, B.; et al. Animal model for the therapy of acquired immunodeficiency syndrome with reverse transcriptase inhibitors. Proc. Natl. Acad. Sci. USA 1995, 92, 8210–8214, doi:10.1073/pnas.92.18.8210. 7545297
[52]
Balzarini, J.; De Clercq, E.; Uberla, K. Siv/hiv-1 hybrid virus expressing the reverse transcriptase gene of hiv-1 remains sensitive to hiv-1-specific reverse transcriptase inhibitors after passage in rhesus macaques. Journal of acquired immune deficiency syndromes and human retrovirology : official publication of the International Retrovirology Association 1997, 15, 1–4, doi:10.1097/00042560-199705010-00001.
[53]
Akiyama, H.; Ido, E.; Akahata, W.; Kuwata, T.; Miura, T.; Hayami, M. Construction and in vivo infection of a new simian/human immunodeficiency virus chimera containing the reverse transcriptase gene and the 3' half of the genomic region of human immunodeficiency virus type 1. J. Gen. Virol. 2003, 84, 1663–1669, doi:10.1099/vir.0.18843-0.
[54]
Ambrose, Z.; Palmer, S.; Boltz, V.F.; Kearney, M.; Larsen, K.; Polacino, P.; Flanary, L.; Oswald, K.; Piatak, M., Jr.; Smedley, J.; et al. Suppression of viremia and evolution of human immunodeficiency virus type 1 drug resistance in a macaque model for antiretroviral therapy. J. Virol. 2007, 81, 12145–12155, doi:10.1128/JVI.01301-07. 17855539
[55]
North, T.W.; Van Rompay, K.K.; Higgins, J.; Matthews, T.B.; Wadford, D.A.; Pedersen, N.C.; Schinazi, R.F. Suppression of virus load by highly active antiretroviral therapy in rhesus macaques infected with a recombinant simian immunodeficiency virus containing reverse transcriptase from human immunodeficiency virus type 1. J. Virol. 2005, 79, 7349–7354, doi:10.1128/JVI.79.12.7349-7354.2005. 15919889
[56]
Hofman, M.J.; Higgins, J.; Matthews, T.B.; Pedersen, N.C.; Tan, C.; Schinazi, R.F.; North, T.W. Efavirenz therapy in rhesus macaques infected with a chimera of simian immunodeficiency virus containing reverse transcriptase from human immunodeficiency virus type 1. Antimicrob. Agents Chemother. 2004, 48, 3483–3490, doi:10.1128/AAC.48.9.3483-3490.2004. 15328115
[57]
Sawyer, S.L.; Emerman, M.; Malik, H.S. Ancient adaptive evolution of the primate antiviral DNA-editing enzyme apobec3g. PLoS Biol. 2004, 2, E275, doi:10.1371/journal.pbio.0020275.
[58]
Sawyer, S.L.; Wu, L.I.; Emerman, M.; Malik, H.S. Positive selection of primate trim5alpha identifies a critical species-specific retroviral restriction domain. Proc. Natl. Acad. Sci. USA 2005, 102, 2832–2837, doi:10.1073/pnas.0409853102. 15689398
[59]
McNatt, M.W.; Zang, T.; Hatziioannou, T.; Bartlett, M.; Fofana, I.B.; Johnson, W.E.; Neil, S.J.; Bieniasz, P.D. Species-specific activity of hiv-1 vpu and positive selection of tetherin transmembrane domain variants. PLoS Pathog. 2009, 5, e1000300, doi:10.1371/journal.ppat.1000300. 19214216
[60]
Liu, H.L.; Wang, Y.Q.; Liao, C.H.; Kuang, Y.Q.; Zheng, Y.T.; Su, B. Adaptive evolution of primate trim5alpha, a gene restricting hiv-1 infection. Gene 2005, 362, 109–116, doi:10.1016/j.gene.2005.06.045.
[61]
Lim, E.S.; Fregoso, O.I.; McCoy, C.O.; Matsen, F.A.; Malik, H.S.; Emerman, M. The ability of primate lentiviruses to degrade the monocyte restriction factor samhd1 preceded the birth of the viral accessory protein vpx. Cell Host Microb. 2012, 11, 194–204, doi:10.1016/j.chom.2012.01.004.
[62]
Laguette, N.; Rahm, N.; Sobhian, B.; Chable-Bessia, C.; Munch, J.; Snoeck, J.; Sauter, D.; Switzer, W.M.; Heneine, W.; Kirchhoff, F.; et al. Evolutionary and functional analyses of the interaction between the myeloid restriction factor samhd1 and the lentiviral vpx protein. Cell Host Microb. 2012, 11, 205–217, doi:10.1016/j.chom.2012.01.007.
[63]
Zhang, C.; de Silva, S.; Wang, J.H.; Wu, L. Co-evolution of primate samhd1 and lentivirus vpx leads to the loss of the vpx gene in hiv-1 ancestor. PloS One 2012, 7, e37477, doi:10.1371/journal.pone.0037477. 22574228
[64]
Jarmuz, A.; Chester, A.; Bayliss, J.; Gisbourne, J.; Dunham, I.; Scott, J.; Navaratnam, N. An anthropoid-specific locus of orphan c to u rna-editing enzymes on chromosome 22. Genomics 2002, 79, 285–296, doi:10.1006/geno.2002.6718. 11863358
[65]
Sheehy, A.M.; Gaddis, N.C.; Choi, J.D.; Malim, M.H. Isolation of a human gene that inhibits hiv-1 infection and is suppressed by the viral vif protein. Nature 2002, 418, 646–650, doi:10.1038/nature00939. 12167863
[66]
Sheehy, A.M.; Gaddis, N.C.; Malim, M.H. The antiretroviral enzyme apobec3g is degraded by the proteasome in response to hiv-1 vif. Nat. Med. 2003, 9, 1404–1407, doi:10.1038/nm945.
[67]
Strebel, K.; Khan, M.A. Apobec3g encapsidation into hiv-1 virions: Which rna is it? Retrovirology 2008, 5, 55, doi:10.1186/1742-4690-5-55.
[68]
Xu, H.; Chertova, E.; Chen, J.; Ott, D.E.; Roser, J.D.; Hu, W.S.; Pathak, V.K. Stoichiometry of the antiviral protein apobec3g in hiv-1 virions. Virology 2007, 360, 247–256, doi:10.1016/j.virol.2006.10.036.
[69]
Bishop, K.N.; Holmes, R.K.; Sheehy, A.M.; Davidson, N.O.; Cho, S.-J.; Malim, M.H. Cytidine deamination of retroviral DNA by diverse apobec proteins. Curr. Biol. 2004, 14, 1392–1396, doi:10.1016/j.cub.2004.06.057. 15296758
Mangeat, B.; Turelli, P.; Caron, G.; Friedli, M.; Perrin, L.; Trono, D. Broad antiretroviral defence by human apobec3g through lethal editing of nascent reverse transcripts. Nature 2003, 424, 99–103, doi:10.1038/nature01709. 12808466
[72]
Zhang, H.; Yang, B.; Pomerantz, R.J.; Zhang, C.; Arunachalam, S.C.; Gao, L. The cytidine deaminase cem15 induces hypermutation in newly synthesized hiv-1 DNA. Nature 2003, 424, 94–98, doi:10.1038/nature01707. 12808465
[73]
Yang, B.; Chen, K.; Zhang, C.; Huang, S.; Zhang, H. Virion-associated uracil DNA glycosylase-2 and apurinic/apyrimidinic endonuclease are involved in the degradation of apobec3g-edited nascent hiv-1 DNA. J. Biol. Chem. 2007, 282, 11667–11675. 17272283
[74]
Casartelli, N.; Guivel-Benhassine, F.; Bouziat, R.; Brandler, S.; Schwartz, O.; Moris, A. The antiviral factor apobec3g improves ctl recognition of cultured hiv-infected t cells. J. Exp. Med. 2010, 207, 39–49, doi:10.1084/jem.20091933.
[75]
Liddament, M.T.; Brown, W.L.; Schumacher, A.J.; Harris, R.S. Apobec3f properties and hypermutation preferences indicate activity against hiv-1 in vivo. Curr. Biol. CB 2004, 14, 1385–1391, doi:10.1016/j.cub.2004.06.050.
[76]
Wiegand, H.L.; Doehle, B.P.; Bogerd, H.P.; Cullen, B.R. A second human antiretroviral factor, apobec3f, is suppressed by the hiv-1 and hiv-2 vif proteins. EMBO J. 2004, 23, 2451–2458, doi:10.1038/sj.emboj.7600246.
[77]
Zheng, Y.H.; Irwin, D.; Kurosu, T.; Tokunaga, K.; Sata, T.; Peterlin, B.M. Human apobec3f is another host factor that blocks human immunodeficiency virus type 1 replication. J. Virol. 2004, 78, 6073–6076, doi:10.1128/JVI.78.11.6073-6076.2004. 15141007
Dang, Y.; Wang, X.; Esselman, W.J.; Zheng, Y.H. Identification of apobec3de as another antiretroviral factor from the human apobec family. J. Virol. 2006, 80, 10522–10533, doi:10.1128/JVI.01123-06.
[80]
Bishop, K.N.; Verma, M.; Kim, E.Y.; Wolinsky, S.M.; Malim, M.H. Apobec3g inhibits elongation of hiv-1 reverse transcripts. PLoS Pathog. 2008, 4, e1000231, doi:10.1371/journal.ppat.1000231.
[81]
Holmes, R.K.; Koning, F.A.; Bishop, K.N.; Malim, M.H. Apobec3f can inhibit the accumulation of hiv-1 reverse transcription products in the absence of hypermutation. Comparisons with apobec3g. J. Biol. Chem. 2007, 282, 2587–2595. 17121840
[82]
Bishop, K.N.; Holmes, R.K.; Malim, M.H. Antiviral potency of apobec proteins does not correlate with cytidine deamination. J. Virol. 2006, 80, 8450–8458, doi:10.1128/JVI.00839-06. 16912295
[83]
Conticello, S.G.; Harris, R.S.; Neuberger, M.S. The vif protein of hiv triggers degradation of the human antiretroviral DNA deaminase apobec3g. Curr. Biol. CB 2003, 13, 2009–2013, doi:10.1016/j.cub.2003.10.034.
[84]
Kobayashi, M.; Takaori-Kondo, A.; Miyauchi, Y.; Iwai, K.; Uchiyama, T. Ubiquitination of apobec3g by an hiv-1 vif-cullin5-elongin b-elongin c complex is essential for vif function. J. Biol. Chem. 2005, 280, 18573–18578, doi:10.1074/jbc.C500082200. 15781449
[85]
Marin, M.; Rose, K.M.; Kozak, S.L.; Kabat, D. Hiv-1 vif protein binds the editing enzyme apobec3g and induces its degradation. Nat. Med. 2003, 9, 1398–1403, doi:10.1038/nm946.
[86]
Mehle, A.; Strack, B.; Ancuta, P.; Zhang, C.; McPike, M.; Gabuzda, D. Vif overcomes the innate antiviral activity of apobec3g by promoting its degradation in the ubiquitin-proteasome pathway. J. Biol. Chem. 2004, 279, 7792–7798. 14672928
[87]
Yu, X.; Yu, Y.; Liu, B.; Luo, K.; Kong, W.; Mao, P.; Yu, X.F. Induction of apobec3g ubiquitination and degradation by an hiv-1 vif-cul5-scf complex. Science 2003, 302, 1056–1060, doi:10.1126/science.1089591. 14564014
[88]
Kao, S.; Khan, M.A.; Miyagi, E.; Plishka, R.; Buckler-White, A.; Strebel, K. The human immunodeficiency virus type 1 vif protein reduces intracellular expression and inhibits packaging of apobec3g (cem15), a cellular inhibitor of virus infectivity. J. Virol. 2003, 77, 11398–11407, doi:10.1128/JVI.77.21.11398-11407.2003. 14557625
[89]
Stopak, K.; de Noronha, C.; Yonemoto, W.; Greene, W.C. Hiv-1 vif blocks the antiviral activity of apobec3g by impairing both its translation and intracellular stability. Mol. cell 2003, 12, 591–601, doi:10.1016/S1097-2765(03)00353-8. 14527406
Bogerd, H.P.; Doehle, B.P.; Wiegand, H.L.; Cullen, B.R. A single amino acid difference in the host apobec3g protein controls the primate species specificity of hiv type 1 virion infectivity factor. Proc. Natl. Acad. Sci. USA 2004, 101, 3770–3774, doi:10.1073/pnas.0307713101. 14999100
[92]
Mangeat, B.; Turelli, P.; Liao, S.; Trono, D. A single amino acid determinant governs the species-specific sensitivity of apobec3g to vif action. J. Biol. Chem. 2004, 279, 14481–14483, doi:10.1074/jbc.C400060200. 14966139
[93]
Schrofelbauer, B.; Chen, D.; Landau, N.R. A single amino acid of apobec3g controls its species-specific interaction with virion infectivity factor (vif). Proc. Natl. Acad. Sci. USA 2004, 101, 3927–3932, doi:10.1073/pnas.0307132101.
[94]
Xu, H.; Svarovskaia, E.S.; Barr, R.; Zhang, Y.; Khan, M.A.; Strebel, K.; Pathak, V.K. A single amino acid substitution in human apobec3g antiretroviral enzyme confers resistance to hiv-1 virion infectivity factor-induced depletion. Proc. Natl. Acad. Sci. USA 2004, 101, 5652–5657, doi:10.1073/pnas.0400830101. 15054139
[95]
Schrofelbauer, B.; Senger, T.; Manning, G.; Landau, N.R. Mutational alteration of human immunodeficiency virus type 1 vif allows for functional interaction with nonhuman primate apobec3g. J. Virol. 2006, 80, 5984–5991, doi:10.1128/JVI.00388-06.
[96]
Cowan, S.; Hatziioannou, T.; Cunningham, T.; Muesing, M.A.; Gottlinger, H.G.; Bieniasz, P.D. Cellular inhibitors with fv1-like activity restrict human and simian immunodeficiency virus tropism. Proc. Natl. Acad. Sci. USA 2002, 99, 11914–11919, doi:10.1073/pnas.162299499. 12154227
[97]
Munk, C.; Brandt, S.M.; Lucero, G.; Landau, N.R. A dominant block to hiv-1 replication at reverse transcription in simian cells. Proc. Natl. Acad. Sci. USA 2002, 99, 13843–13848, doi:10.1073/pnas.212400099. 12368468
[98]
Besnier, C.; Takeuchi, Y.; Towers, G. Restriction of lentivirus in monkeys. Proc. Natl. Acad. Sci. USA 2002, 99, 11920–11925, doi:10.1073/pnas.172384599. 12154231
[99]
Hatziioannou, T.; Cowan, S.; Goff, S.P.; Bieniasz, P.D.; Towers, G.J. Restriction of multiple divergent retroviruses by lv1 and ref1. EMBO J. 2003, 22, 385–394, doi:10.1093/emboj/cdg042. 12554640
[100]
Stremlau, M.; Owens, C.M.; Perron, M.J.; Kiessling, M.; Autissier, P.; Sodroski, J. The cytoplasmic body component trim5alpha restricts hiv-1 infection in old world monkeys. Nature 2004, 427, 848–853, doi:10.1038/nature02343. 14985764
[101]
Stremlau, M.; Perron, M.; Lee, M.; Li, Y.; Song, B.; Javanbakht, H.; Diaz-Griffero, F.; Anderson, D.J.; Sundquist, W.I.; Sodroski, J. Specific recognition and accelerated uncoating of retroviral capsids by the trim5alpha restriction factor. Proc. Natl. Acad. Sci. USA 2006, 103, 5514–5519, doi:10.1073/pnas.0509996103. 16540544
[102]
Anderson, J.L.; Campbell, E.M.; Wu, X.; Vandegraaff, N.; Engelman, A.; Hope, T.J. Proteasome inhibition reveals that a functional preintegration complex intermediate can be generated during restriction by diverse trim5 proteins. J. Virol. 2006, 80, 9754–9760, doi:10.1128/JVI.01052-06. 16973579
[103]
Wu, X.; Anderson, J.L.; Campbell, E.M.; Joseph, A.M.; Hope, T.J. Proteasome inhibitors uncouple rhesus trim5alpha restriction of hiv-1 reverse transcription and infection. Proc. Natl. Acad. Sci. USA 2006, 103, 7465–7470, doi:10.1073/pnas.0510483103. 16648264
[104]
Hofmann, W.; Schubert, D.; LaBonte, J.; Munson, L.; Gibson, S.; Scammell, J.; Ferrigno, P.; Sodroski, J. Species-specific, postentry barriers to primate immunodeficiency virus infection. J. Virol. 1999, 73, 10020–10028. 10559316
[105]
Sayah, D.M.; Sokolskaja, E.; Berthoux, L.; Luban, J. Cyclophilin a retrotransposition into trim5 explains owl monkey resistance to hiv-1. Nature 2004, 430, 569–573, doi:10.1038/nature02777. 15243629
[106]
Nisole, S.; Lynch, C.; Stoye, J.P.; Yap, M.W. A trim5-cyclophilin a fusion protein found in owl monkey kidney cells can restrict hiv-1. Proc. Natl. Acad. Sci. USA 2004, 101, 13324–13328, doi:10.1073/pnas.0404640101. 15326303
[107]
Sokolskaja, E.; Sayah, D.M.; Luban, J. Target cell cyclophilin a modulates human immunodeficiency virus type 1 infectivity. J. Virol. 2004, 78, 12800–12808, doi:10.1128/JVI.78.23.12800-12808.2004. 15542632
[108]
Hatziioannou, T.; Perez-Caballero, D.; Cowan, S.; Bieniasz, P.D. Cyclophilin interactions with incoming human immunodeficiency virus type 1 capsids with opposing effects on infectivity in human cells. J. Virol. 2005, 79, 176–183, doi:10.1128/JVI.79.1.176-183.2005. 15596813
[109]
Keckesova, Z.; Ylinen, L.M.; Towers, G.J. Cyclophilin a renders human immunodeficiency virus type 1 sensitive to old world monkey but not human trim5 alpha antiviral activity. J. Virol. 2006, 80, 4683–4690, doi:10.1128/JVI.80.10.4683-4690.2006. 16641261
[110]
Berthoux, L.; Sebastian, S.; Sokolskaja, E.; Luban, J. Cyclophilin a is required for trim5{alpha}-mediated resistance to hiv-1 in old world monkey cells. Proc. Natl. Acad. Sci. USA 2005, 102, 14849–14853, doi:10.1073/pnas.0505659102. 16203999
[111]
Nakayama, E.E.; Miyoshi, H.; Nagai, Y.; Shioda, T. A specific region of 37 amino acid residues in the spry (b30.2) domain of african green monkey trim5alpha determines species-specific restriction of simian immunodeficiency virus sivmac infection. J. Virol. 2005, 79, 8870–8877, doi:10.1128/JVI.79.14.8870-8877.2005. 15994780
[112]
Virgen, C.A.; Kratovac, Z.; Bieniasz, P.D.; Hatziioannou, T. Independent genesis of chimeric trim5-cyclophilin proteins in two primate species. Proc. Natl. Acad. Sci. USA 2008, 105, 3563–3568, doi:10.1073/pnas.0709258105. 18287034
[113]
Nakayama, E.E.; Shioda, T. Anti-retroviral activity of trim5 alpha. Rev. Med. Virol. 2010, 20, 77–92, doi:10.1002/rmv.637.
[114]
Hatziioannou, T.; Perez-Caballero, D.; Yang, A.; Cowan, S.; Bieniasz, P.D. Retrovirus resistance factors ref1 and lv1 are species-specific variants of trim5alpha. Proc. Natl. Acad. Sci. USA 2004, 101, 10774–10779, doi:10.1073/pnas.0402361101. 15249685
[115]
Keckesova, Z.; Ylinen, L.M.; Towers, G.J. The human and african green monkey trim5alpha genes encode ref1 and lv1 retroviral restriction factor activities. Proc. Natl. Acad. Sci. USA 2004, 101, 10780–10785, doi:10.1073/pnas.0402474101. 15249687
[116]
Song, B.; Javanbakht, H.; Perron, M.; Park, D.H.; Stremlau, M.; Sodroski, J. Retrovirus restriction by trim5alpha variants from old world and new world primates. J. Virol. 2005, 79, 3930–3937, doi:10.1128/JVI.79.7.3930-3937.2005. 15767395
[117]
Wilson, S.J.; Webb, B.L.; Ylinen, L.M.; Verschoor, E.; Heeney, J.L.; Towers, G.J. Independent evolution of an antiviral trimcyp in rhesus macaques. Proc. Natl. Acad. Sci. USA 2008, 105, 3557–3562, doi:10.1073/pnas.0709003105. 18287035
[118]
Brennan, G.; Kozyrev, Y.; Hu, S.L. Trimcyp expression in old world primates macaca nemestrina and macaca fascicularis. Proc. Natl. Acad. Sci. USA 2008, 105, 3569–3574, doi:10.1073/pnas.0709511105. 18287033
[119]
Kupzig, S.; Korolchuk, V.; Rollason, R.; Sugden, A.; Wilde, A.; Banting, G. Bst-2/hm1.24 is a raft-associated apical membrane protein with an unusual topology. Traffic 2003, 4, 694–709, doi:10.1034/j.1600-0854.2003.00129.x.
[120]
Neil, S.J.; Zang, T.; Bieniasz, P.D. Tetherin inhibits retrovirus release and is antagonized by Hiv-1 vpu. Nature 2008, 451, 425–430, doi:10.1038/nature06553. 18200009
[121]
Van Damme, N.; Goff, D.; Katsura, C.; Jorgenson, R.L.; Mitchell, R.; Johnson, M.C.; Stephens, E.B.; Guatelli, J. The interferon-induced protein bst-2 restricts hiv-1 release and is downregulated from the cell surface by the viral vpu protein. Cell Host Microb. 2008, 3, 245–252, doi:10.1016/j.chom.2008.03.001.
[122]
Neil, S.J.; Sandrin, V.; Sundquist, W.I.; Bieniasz, P.D. An interferon-alpha-induced tethering mechanism inhibits hiv-1 and ebola virus particle release but is counteracted by the hiv-1 vpu protein. Cell Host Microb. 2007, 2, 193–203, doi:10.1016/j.chom.2007.08.001.
[123]
Sato, K.; Yamamoto, S.P.; Misawa, N.; Yoshida, T.; Miyazawa, T.; Koyanagi, Y. Comparative study on the effect of human bst-2/tetherin on hiv-1 release in cells of various species. Retrovirology 2009, 6, 53, doi:10.1186/1742-4690-6-53.
Kuhl, B.D.; Sloan, R.D.; Donahue, D.A.; Bar-Magen, T.; Liang, C.; Wainberg, M.A. Tetherin restricts direct cell-to-cell infection of hiv-1. Retrovirology 2010, 7, 115, doi:10.1186/1742-4690-7-115.
[126]
Jolly, C.; Booth, N.J.; Neil, S.J. Cell-cell spread of human immunodeficiency virus type 1 overcomes tetherin/bst-2-mediated restriction in t cells. J. Virol. 2010, 84, 12185–12199, doi:10.1128/JVI.01447-10. 20861257
[127]
Coleman, C.M.; Spearman, P.; Wu, L. Tetherin does not significantly restrict dendritic cell-mediated hiv-1 transmission and its expression is upregulated by newly synthesized hiv-1 nef. Retrovirology 2011, 8, 26, doi:10.1186/1742-4690-8-26.
[128]
Bartee, E.; McCormack, A.; Fruh, K. Quantitative membrane proteomics reveals new cellular targets of viral immune modulators. PLoS Pathog. 2006, 2, e107, doi:10.1371/journal.ppat.0020107.
[129]
Douglas, J.L.; Viswanathan, K.; McCarroll, M.N.; Gustin, J.K.; Fruh, K.; Moses, A.V. Vpu directs the degradation of the human immunodeficiency virus restriction factor bst-2/tetherin via a {beta}trcp-dependent mechanism. J. Virol. 2009, 83, 7931–7947, doi:10.1128/JVI.00242-09. 19515779
[130]
Mangeat, B.; Gers-Huber, G.; Lehmann, M.; Zufferey, M.; Luban, J.; Piguet, V. Hiv-1 vpu neutralizes the antiviral factor tetherin/bst-2 by binding it and directing its beta-trcp2-dependent degradation. PLoS Pathog. 2009, 5, e1000574, doi:10.1371/journal.ppat.1000574.
Goffinet, C.; Allespach, I.; Homann, S.; Tervo, H.M.; Habermann, A.; Rupp, D.; Oberbremer, L.; Kern, C.; Tibroni, N.; Welsch, S.; et al. Hiv-1 antagonism of cd317 is species specific and involves vpu-mediated proteasomal degradation of the restriction factor. Cell Host Microb. 2009, 5, 285–297, doi:10.1016/j.chom.2009.01.009.
[133]
Le Tortorec, A.; Neil, S.J. Antagonism to and intracellular sequestration of human tetherin by the human immunodeficiency virus type 2 envelope glycoprotein. J. Virol. 2009, 83, 11966–11978, doi:10.1128/JVI.01515-09.
[134]
Jia, B.; Serra-Moreno, R.; Neidermyer, W.; Rahmberg, A.; Mackey, J.; Fofana, I.B.; Johnson, W.E.; Westmoreland, S.; Evans, D.T. Species-specific activity of siv nef and hiv-1 vpu in overcoming restriction by tetherin/bst2. PLoS Pathog. 2009, 5, e1000429, doi:10.1371/journal.ppat.1000429. 19436700
Lim, E.S.; Emerman, M. Simian immunodeficiency virus sivagm from african green monkeys does not antagonize endogenous levels of african green monkey tetherin/bst-2. J. Virol. 2009, 83, 11673–11681, doi:10.1128/JVI.00569-09. 19726508
[137]
Gupta, R.K.; Hue, S.; Schaller, T.; Verschoor, E.; Pillay, D.; Towers, G.J. Mutation of a single residue renders human tetherin resistant to hiv-1 vpu-mediated depletion. PLoS Pathog. 2009, 5, e1000443, doi:10.1371/journal.ppat.1000443.
[138]
Rong, L.; Zhang, J.; Lu, J.; Pan, Q.; Lorgeoux, R.P.; Aloysius, C.; Guo, F.; Liu, S.L.; Wainberg, M.A.; Liang, C. The transmembrane domain of bst-2 determines its sensitivity to down-modulation by human immunodeficiency virus type 1 vpu. J. Virol. 2009, 83, 7536–7546, doi:10.1128/JVI.00620-09. 19474106
Theodore, T.S.; Englund, G.; Buckler-White, A.; Buckler, C.E.; Martin, M.A.; Peden, K.W. Construction and characterization of a stable full-length macrophage-tropic hiv type 1 molecular clone that directs the production of high titers of progeny virions. AIDS Res. Hum. Retroviruses 1996, 12, 191–194, doi:10.1089/aid.1996.12.191.
[141]
Li, Y.; Kappes, J.C.; Conway, J.A.; Price, R.W.; Shaw, G.M.; Hahn, B.H. Molecular characterization of human immunodeficiency virus type 1 cloned directly from uncultured human brain tissue: Identification of replication-competent and -defective viral genomes. J. Virol. 1991, 65, 3973–3985. 1830110
[142]
Miyagi, E.; Andrew, A.J.; Kao, S.; Strebel, K. Vpu enhances hiv-1 virus release in the absence of bst-2 cell surface down-modulation and intracellular depletion. Proc. Natl. Acad. Sci. USA 2009, 106, 2868–2873, doi:10.1073/pnas.0813223106. 19196977
[143]
Goujon, C.; Arfi, V.; Pertel, T.; Luban, J.; Lienard, J.; Rigal, D.; Darlix, J.L.; Cimarelli, A. Characterization of simian immunodeficiency virus sivsm/human immunodeficiency virus type 2 vpx function in human myeloid cells. J. Virol. 2008, 82, 12335–12345, doi:10.1128/JVI.01181-08. 18829761
[144]
Goujon, C.; Riviere, L.; Jarrosson-Wuilleme, L.; Bernaud, J.; Rigal, D.; Darlix, J.L.; Cimarelli, A. Sivsm/hiv-2 vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway present in human dendritic cells. Retrovirology 2007, 4, 2, doi:10.1186/1742-4690-4-2.
[145]
Kaushik, R.; Zhu, X.; Stranska, R.; Wu, Y.; Stevenson, M. A cellular restriction dictates the permissivity of nondividing monocytes/macrophages to lentivirus and gammaretrovirus infection. Cell Host Microb. 2009, 6, 68–80, doi:10.1016/j.chom.2009.05.022.
[146]
Sharova, N.; Wu, Y.; Zhu, X.; Stranska, R.; Kaushik, R.; Sharkey, M.; Stevenson, M. Primate lentiviral vpx commandeers ddb1 to counteract a macrophage restriction. PLoS Pathog. 2008, 4, e1000057, doi:10.1371/journal.ppat.1000057.
[147]
Goujon, C.; Jarrosson-Wuilleme, L.; Bernaud, J.; Rigal, D.; Darlix, J.L.; Cimarelli, A. With a little help from a friend: Increasing hiv transduction of monocyte-derived dendritic cells with virion-like particles of siv(mac). Gene Ther. 2006, 13, 991–994, doi:10.1038/sj.gt.3302753.
[148]
Ayinde, D.; Maudet, C.; Transy, C.; Margottin-Goguet, F. Limelight on two hiv/siv accessory proteins in macrophage infection: Is vpx overshadowing vpr? Retrovirology 2010, 7, 35, doi:10.1186/1742-4690-7-35.
Bergamaschi, A.; Ayinde, D.; David, A.; Le Rouzic, E.; Morel, M.; Collin, G.; Descamps, D.; Damond, F.; Brun-Vezinet, F.; Nisole, S.; et al. The human immunodeficiency virus type 2 vpx protein usurps the cul4a-ddb1 dcaf1 ubiquitin ligase to overcome a postentry block in macrophage infection. J. Virol. 2009, 83, 4854–4860, doi:10.1128/JVI.00187-09. 19264781
[151]
Hrecka, K.; Hao, C.; Gierszewska, M.; Swanson, S.K.; Kesik-Brodacka, M.; Srivastava, S.; Florens, L.; Washburn, M.P.; Skowronski, J. Vpx relieves inhibition of hiv-1 infection of macrophages mediated by the samhd1 protein. Nature 2011, 474, 658–661, doi:10.1038/nature10195. 21720370
[152]
Laguette, N.; Sobhian, B.; Casartelli, N.; Ringeard, M.; Chable-Bessia, C.; Segeral, E.; Yatim, A.; Emiliani, S.; Schwartz, O.; Benkirane, M. Samhd1 is the dendritic- and myeloid-cell-specific hiv-1 restriction factor counteracted by vpx. Nature 2011, 474, 654–657, doi:10.1038/nature10117. 21613998
[153]
Rice, G.I.; Bond, J.; Asipu, A.; Brunette, R.L.; Manfield, I.W.; Carr, I.M.; Fuller, J.C.; Jackson, R.M.; Lamb, T.; Briggs, T.A.; et al. Mutations involved in aicardi-goutieres syndrome implicate samhd1 as regulator of the innate immune response. Nat. Genet. 2009, 41, 829–832, doi:10.1038/ng.373. 19525956
[154]
Crow, Y.J.; Leitch, A.; Hayward, B.E.; Garner, A.; Parmar, R.; Griffith, E.; Ali, M.; Semple, C.; Aicardi, J.; Babul-Hirji, R.; et al. Mutations in genes encoding ribonuclease h2 subunits cause aicardi-goutieres syndrome and mimic congenital viral brain infection. Nat. Genet. 2006, 38, 910–916, doi:10.1038/ng1842. 16845400
[155]
Crow, Y.J.; Hayward, B.E.; Parmar, R.; Robins, P.; Leitch, A.; Ali, M.; Black, D.N.; van Bokhoven, H.; Brunner, H.G.; Hamel, B.C.; et al. Mutations in the gene encoding the 3'-5' DNA exonuclease trex1 cause aicardi-goutieres syndrome at the ags1 locus. Nat. Genet. 2006, 38, 917–920, doi:10.1038/ng1845. 16845398
[156]
Yan, N.; Regalado-Magdos, A.D.; Stiggelbout, B.; Lee-Kirsch, M.A.; Lieberman, J. The cytosolic exonuclease trex1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat. Immunol. 2010, 11, 1005–1013, doi:10.1038/ni.1941.
[157]
Genovesio, A.; Kwon, Y.J.; Windisch, M.P.; Kim, N.Y.; Choi, S.Y.; Kim, H.C.; Jung, S.; Mammano, F.; Perrin, V.; Boese, A.S.; et al. Automated genome-wide visual profiling of cellular proteins involved in hiv infection. J. Biomol. Screening 2011, 16, 945–958, doi:10.1177/1087057111415521.
Powell, R.D.; Holland, P.J.; Hollis, T.; Perrino, F.W. Aicardi-goutieres syndrome gene and hiv-1 restriction factor samhd1 is a dgtp-regulated deoxynucleotide triphosphohydrolase. J. Biol. Chem. 2011, 286, 43596–43600, doi:10.1074/jbc.C111.317628. 22069334
[160]
Lahouassa, H.; Daddacha, W.; Hofmann, H.; Ayinde, D.; Logue, E.C.; Dragin, L.; Bloch, N.; Maudet, C.; Bertrand, M.; Gramberg, T.; et al. Samhd1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat. Immunol. 2012, 13, 223–228. 22327569
[161]
Manel, N.; Hogstad, B.; Wang, Y.; Levy, D.E.; Unutmaz, D.; Littman, D.R. A cryptic sensor for hiv-1 activates antiviral innate immunity in dendritic cells. Nature 2010, 467, 214–217, doi:10.1038/nature09337. 20829794
[162]
Beignon, A.S.; McKenna, K.; Skoberne, M.; Manches, O.; DaSilva, I.; Kavanagh, D.G.; Larsson, M.; Gorelick, R.J.; Lifson, J.D.; Bhardwaj, N. Endocytosis of hiv-1 activates plasmacytoid dendritic cells via toll-like receptor-viral rna interactions. J. Clin. Invest. 2005, 115, 3265–3275, doi:10.1172/JCI26032. 16224540
[163]
Tsang, J.; Chain, B.M.; Miller, R.F.; Webb, B.L.; Barclay, W.; Towers, G.J.; Katz, D.R.; Noursadeghi, M. Hiv-1 infection of macrophages is dependent on evasion of innate immune cellular activation. AIDS 2009, 23, 2255–2263, doi:10.1097/QAD.0b013e328331a4ce.
[164]
Asaoka, K.; Ikeda, K.; Hishinuma, T.; Horie-Inoue, K.; Takeda, S.; Inoue, S. A retrovirus restriction factor trim5alpha is transcriptionally regulated by interferons. Biochem. Biophys. Res. Commun. 2005, 338, 1950–1956, doi:10.1016/j.bbrc.2005.10.173.
[165]
Tanaka, Y.; Marusawa, H.; Seno, H.; Matsumoto, Y.; Ueda, Y.; Kodama, Y.; Endo, Y.; Yamauchi, J.; Matsumoto, T.; Takaori-Kondo, A.; et al. Anti-viral protein apobec3g is induced by interferon-alpha stimulation in human hepatocytes. Biochem. Biophys. Res. Commun. 2006, 341, 314–319, doi:10.1016/j.bbrc.2005.12.192.
[166]
Carthagena, L.; Parise, M.C.; Ringeard, M.; Chelbi-Alix, M.K.; Hazan, U.; Nisole, S. Implication of trim alpha and trimcyp in interferon-induced anti-retroviral restriction activities. Retrovirology 2008, 5, 59, doi:10.1186/1742-4690-5-59.
[167]
Tissot, C.; Mechti, N. Molecular cloning of a new interferon-induced factor that represses human immunodeficiency virus type 1 long terminal repeat expression. J. Biol. Chem. 1995, 270, 14891–14898, doi:10.1074/jbc.270.25.14891. 7797467
[168]
Kajaste-Rudnitski, A.; Marelli, S.S.; Pultrone, C.; Pertel, T.; Uchil, P.D.; Mechti, N.; Mothes, W.; Poli, G.; Luban, J.; Vicenzi, E. Trim22 inhibits hiv-1 transcription independently of its e3 ubiquitin ligase activity, tat, and nf-kappab-responsive long terminal repeat elements. J. Virol. 2011, 85, 5183–5196, doi:10.1128/JVI.02302-10. 21345949
[169]
Barr, S.D.; Smiley, J.R.; Bushman, F.D. The interferon response inhibits hiv particle production by induction of trim22. PLoS Pathog. 2008, 4, e1000007, doi:10.1371/journal.ppat.1000007.
[170]
Lu, J.; Pan, Q.; Rong, L.; He, W.; Liu, S.L.; Liang, C. The ifitm proteins inhibit hiv-1 infection. J. Virol. 2011, 85, 2126–2137, doi:10.1128/JVI.01531-10. 21177806
[171]
Poli, G.; Orenstein, J.M.; Kinter, A.; Folks, T.M.; Fauci, A.S. Interferon-alpha but not azt suppresses hiv expression in chronically infected cell lines. Science 1989, 244, 575–577, doi:10.1126/science.2470148. 2470148
[172]
Bednarik, D.P.; Mosca, J.D.; Raj, N.B.; Pitha, P.M. Inhibition of human immunodeficiency virus (hiv) replication by hiv-trans-activated alpha 2-interferon. Proc. Natl. Acad. Sci. USA 1989, 86, 4958–4962, doi:10.1073/pnas.86.13.4958. 2472636
[173]
Meylan, P.R.; Guatelli, J.C.; Munis, J.R.; Richman, D.D.; Kornbluth, R.S. Mechanisms for the inhibition of hiv replication by interferons-alpha, -beta, and -gamma in primary human macrophages. Virology 1993, 193, 138–148, doi:10.1006/viro.1993.1110.
[174]
Gendelman, H.E.; Baca, L.M.; Turpin, J.; Kalter, D.C.; Hansen, B.; Orenstein, J.M.; Dieffenbach, C.W.; Friedman, R.M.; Meltzer, M.S. Regulation of hiv replication in infected monocytes by ifn-alpha. Mechanisms for viral restriction. J. Immunol. 1990, 145, 2669–2676. 1976701
[175]
Shirazi, Y.; Pitha, P.M. Interferon alpha-mediated inhibition of human immunodeficiency virus type 1 provirus synthesis in t-cells. Virology 1993, 193, 303–312, doi:10.1006/viro.1993.1126.
[176]
Agy, M.B.; Acker, R.L.; Sherbert, C.H.; Katze, M.G. Interferon treatment inhibits virus replication in hiv-1- and siv-infected cd4+ t-cell lines by distinct mechanisms: Evidence for decreased stability and aberrant processing of hiv-1 proteins. Virology 1995, 214, 379–386, doi:10.1006/viro.1995.0047.
[177]
Goujon, C.; Malim, M.H. Characterization of the alpha interferon-induced postentry block to hiv-1 infection in primary human macrophages and t cells. J. Virol. 2010, 84, 9254–9266, doi:10.1128/JVI.00854-10.
[178]
Hatziioannou, T.; Princiotta, M.; Piatak, M., Jr.; Yuan, F.; Zhang, F.; Lifson, J.D.; Bieniasz, P.D. Generation of simian-tropic hiv-1 by restriction factor evasion. Science 2006, 314, 95, doi:10.1126/science.1130994. 17023652
[179]
Kamada, K.; Igarashi, T.; Martin, M.A.; Khamsri, B.; Hatcho, K.; Yamashita, T.; Fujita, M.; Uchiyama, T.; Adachi, A. Generation of hiv-1 derivatives that productively infect macaque monkey lymphoid cells. Proc. Natl. Acad. Sci. USA 2006, 103, 16959–16964, doi:10.1073/pnas.0608289103. 17065315
[180]
Igarashi, T.; Iyengar, R.; Byrum, R.A.; Buckler-White, A.; Dewar, R.L.; Buckler, C.E.; Lane, H.C.; Kamada, K.; Adachi, A.; Martin, M.A. Human immunodeficiency virus type 1 derivative with 7% simian immunodeficiency virus genetic content is able to establish infections in pig-tailed macaques. J. Virol. 2007, 81, 11549–11552, doi:10.1128/JVI.00960-07. 17670817
[181]
Kuroishi, A.; Saito, A.; Shingai, Y.; Shioda, T.; Nomaguchi, M.; Adachi, A.; Akari, H.; Nakayama, E.E. Modification of a loop sequence between alpha-helices 6 and 7 of virus capsid (ca) protein in a human immunodeficiency virus type 1 (hiv-1) derivative that has simian immunodeficiency virus (sivmac239) vif and ca alpha-helices 4 and 5 loop improves replication in cynomolgus monkey cells. Retrovirology 2009, 6, 70, doi:10.1186/1742-4690-6-70. 19650891
[182]
Saito, A.; Nomaguchi, M.; Iijima, S.; Kuroishi, A.; Yoshida, T.; Lee, Y.-J.; Hayakawa, T.; Kono, K.; Nakayama, E.E.; Shioda, T.; et al. Improved capacity of a monkey-tropic hiv-1 derivative to replicate in cynomolgus monkeys with minimal modifications. Microbes Infection 2011, 13, 58–64, doi:10.1016/j.micinf.2010.10.001.
Frumkin, L.R.; Agy, M.B.; Coombs, R.W.; Panther, L.; Morton, W.R.; Koehler, J.; Florey, M.J.; Dragavon, J.; Schmidt, A.; Katze, M.G.; et al. Acute infection of macaca nemestrina by human immunodeficiency virus type 1. Virology 1993, 195, 422–431, doi:10.1006/viro.1993.1392.
[187]
Gartner, S.; Liu, Y.; Polonis, V.; Lewis, M.G.; Elkins, W.R.; Hunter, E.A.; Miao, J.; Corts, K.J.; Eddy, G.A. Adaptation of hiv-1 to pigtailed macaques. J. Med. Primatology 1994, 23, 155–163, doi:10.1111/j.1600-0684.1994.tb00117.x.
[188]
Bosch, M.L.; Schmidt, A.; Chen, J.; Florey, M.J.; Agy, M.; Morton, W.R. Enhanced replication of hiv-1 in vivo in pigtailed macaques (macaca nemestrina). J. Med. Primatology 2000, 29, 107–113.
[189]
Bosch, M.L.; Schmidt, A.; Agy, M.B.; Kimball, L.E.; Morton, W.R. Infection of macaca nemestrina neonates with hiv-1 via different routes of inoculation. AIDS 1997, 11, 1555–1563, doi:10.1097/00002030-199713000-00003.
[190]
Thippeshappa, R.; Polacino, P.; Yu Kimata, M.T.; Siwak, E.B.; Anderson, D.; Wang, W.; Sherwood, L.; Arora, R.; Wen, M.; Zhou, P.; et al. Vif substitution enables persistent infection of pig-tailed macaques by human immunodeficiency virus type 1. J. Virol. 2011, 85, 3767–3779, doi:10.1128/JVI.02438-10. 21289128
Liao, C.H.; Kuang, Y.Q.; Liu, H.L.; Zheng, Y.T.; Su, B. A novel fusion gene, trim5-cyclophilin a in the pig-tailed macaque determines its susceptibility to hiv-1 infection. AIDS 2007, 21, S19–S26. 18172386
[193]
Newman, R.M.; Hall, L.; Kirmaier, A.; Pozzi, L.A.; Pery, E.; Farzan, M.; O'Neil, S.P.; Johnson, W. Evolution of a trim5-cypa splice isoform in old world monkeys. PLoS Pathog. 2008, 4, e1000003, doi:10.1371/journal.ppat.1000003.
[194]
Hatziioannou, T.; Ambrose, Z.; Chung, N.P.; Piatak, M., Jr.; Yuan, F.; Trubey, C.M.; Coalter, V.; Kiser, R.; Schneider, D.; Smedley, J.; et al. A macaque model of hiv-1 infection. Proc. Natl. Acad. Sci. USA 2009, 106, 4425–4429, doi:10.1073/pnas.0812587106. 19255423
[195]
Kimata, J.T.; Kuller, L.; Anderson, D.B.; Dailey, P.; Overbaugh, J. Emerging cytopathic and antigenic simian immunodeficiency virus variants influence aids progression. Nat.Med. 1999, 5, 535–541, doi:10.1038/8414.
[196]
Kimata, J.T.; Mozaffarian, A.; Overbaugh, J. A lymph node-derived cytopathic simian immunodeficiency virus mne variant replicates in nonstimulated peripheral blood mononuclear cells. J. Virol. 1998, 72, 245–256. 9420221
[197]
Thippeshappa, R.; Kimata, J.T. Unpublished Work. Baylor College of Medicine, Houston, Texas, USA, 2012.
[198]
Virgen, C.A.; Hatziioannou, T. Antiretroviral activity and vif sensitivity of rhesus macaque apobec3 proteins. J. Virol. 2007, 81, 13932–13937, doi:10.1128/JVI.01760-07. 17942564
[199]
Chen, K.; Huang, J.; Zhang, C.; Huang, S.; Nunnari, G.; Wang, F.X.; Tong, X.; Gao, L.; Nikisher, K.; Zhang, H. Alpha interferon potently enhances the anti-human immunodeficiency virus type 1 activity of apobec3g in resting primary cd4 t cells. J. Virol. 2006, 80, 7645–7657, doi:10.1128/JVI.00206-06. 16840343
[200]
Koning, F.A.; Newman, E.N.; Kim, E.Y.; Kunstman, K.J.; Wolinsky, S.M.; Malim, M.H. Defining apobec3 expression patterns in human tissues and hematopoietic cell subsets. J. Virol. 2009, 83, 9474–9485, doi:10.1128/JVI.01089-09. 19587057
[201]
Pido-Lopez, J.; Whittall, T.; Wang, Y.; Bergmeier, L.A.; Babaahmady, K.; Singh, M.; Lehner, T. Stimulation of cell surface ccr5 and cd40 molecules by their ligands or by hsp70 up-regulates apobec3g expression in cd4(+) t cells and dendritic cells. J. Immunol. 2007, 178, 1671–1679. 17237417
[202]
Refsland, E.W.; Stenglein, M.D.; Shindo, K.; Albin, J.S.; Brown, W.L.; Harris, R.S. Quantitative profiling of the full apobec3 mrna repertoire in lymphocytes and tissues: Implications for hiv-1 restriction. Nucleic Acids Res. 2010, 38, 4274–4284, doi:10.1093/nar/gkq174. 20308164
[203]
Rose, K.M.; Marin, M.; Kozak, S.L.; Kabat, D. Transcriptional regulation of apobec3g, a cytidine deaminase that hypermutates human immunodeficiency virus. J. Biol. Chem. 2004, 279, 41744–41749, doi:10.1074/jbc.M406760200. 15297452
[204]
Sarkis, P.T.; Ying, S.; Xu, R.; Yu, X.F. Stat1-independent cell type-specific regulation of antiviral apobec3g by ifn-alpha. J. Immunol. 2006, 177, 4530–4540. 16982890
[205]
Stopak, K.S.; Chiu, Y.L.; Kropp, J.; Grant, R.M.; Greene, W.C. Distinct patterns of cytokine regulation of apobec3g expression and activity in primary lymphocytes, macrophages, and dendritic cell. J. Biol. Chem. 2007, 282, 3539–3546. 17110377
[206]
Ying, S.; Zhang, X.; Sarkis, P.T.; Xu, R.; Yu, X. Cell-specific regulation of apobec3f by interferons. Acta Biochim. Biophy. Sin. 2007, 39, 297–304, doi:10.1111/j.1745-7270.2007.00275.x.
[207]
Dettenhofer, M.; Yu, X.F. Highly purified human immunodeficiency virus type 1 reveals a virtual absence of vif in virions. J. Virol. 1999, 73, 1460–1467. 9882352
[208]
Kao, S.; Akari, H.; Khan, M.A.; Dettenhofer, M.; Yu, X.F.; Strebel, K. Human immunodeficiency virus type 1 vif is efficiently packaged into virions during productive but not chronic infection. J. Virol. 2003, 77, 1131–1140, doi:10.1128/JVI.77.2.1131-1140.2003.
[209]
Khan, M.A.; Aberham, C.; Kao, S.; Akari, H.; Gorelick, R.; Bour, S.; Strebel, K. Human immunodeficiency virus type 1 vif protein is packaged into the nucleoprotein complex through an interaction with viral genomic rna. J. Virol. 2001, 75, 7252–7265, doi:10.1128/JVI.75.16.7252-7265.2001. 11461998
[210]
Liu, B.; Yu, X.; Luo, K.; Yu, Y.; Yu, X.F. Influence of primate lentiviral vif and proteasome inhibitors on human immunodeficiency virus type 1 virion packaging of apobec3g. J. Virol. 2004, 78, 2072–2081, doi:10.1128/JVI.78.4.2072-2081.2004.
[211]
Liu, H.; Wu, X.; Newman, M.; Shaw, G.M.; Hahn, B.H.; Kappes, J.C. The vif protein of human and simian immunodeficiency viruses is packaged into virions and associates with viral core structures. J. Virol. 1995, 69, 7630–7638. 7494271
[212]
Simon, J.H.; Miller, D.L.; Fouchier, R.A.; Malim, M.H. Virion incorporation of human immunodeficiency virus type-1 vif is determined by intracellular expression level and may not be necessary for function. Virology 1998, 248, 182–187, doi:10.1006/viro.1998.9296.
[213]
Carr, J.M.; Coolen, C.; Davis, A.J.; Burrell, C.J.; Li, P. Human immunodeficiency virus 1 (hiv-1) virion infectivity factor (vif) is part of reverse transcription complexes and acts as an accessory factor for reverse transcription. Virology 2008, 372, 147–156, doi:10.1016/j.virol.2007.10.041.
[214]
Izumi, T.; Io, K.; Matsui, M.; Shirakawa, K.; Shinohara, M.; Nagai, Y.; Kawahara, M.; Kobayashi, M.; Kondoh, H.; Misawa, N.; et al. Hiv-1 viral infectivity factor interacts with tp53 to induce g2 cell cycle arrest and positively regulate viral replication. Proc. Natl. Acad. Sci. USA 2010, 107, 20798–20803, doi:10.1073/pnas.1008076107. 21071676
Sakai, K.; Dimas, J.; Lenardo, M.J. The vif and vpr accessory proteins independently cause Hiv-1-induced t cell cytopathicity and cell cycle arrest. Proc. Natl. Acad. Sci. USA 2006, 103, 3369–3374, doi:10.1073/pnas.0509417103. 16492778
[217]
Alexander, L.; Du, Z.; Howe, A.Y.; Czajak, S.; Desrosiers, R.C. Induction of aids in rhesus monkeys by a recombinant simian immunodeficiency virus expressing nef of human immunodeficiency virus type 1. J. Virol. 1999, 73, 5814–5825. 10364333
[218]
Kirchhoff, F.; Munch, J.; Carl, S.; Stolte, N.; Matz-Rensing, K.; Fuchs, D.; Haaft, P.T.; Heeney, J.L.; Swigut, T.; Skowronski, J.; et al. The human immunodeficiency virus type 1 nef gene can to a large extent replace simian immunodeficiency virus nef in vivo. J. Virol. 1999, 73, 8371–8383. 10482588
Thippeshappa, R.P.P.P.; Yu-Kimata, M.T.; Anderson, D.; Wang, W.; Arora, R.; Wen, M.; Zhou, P.; Hu, S.-L.; Kimata, J.T. Overcoming Restriction by Apobec3 Family Protiens Is Key for Persistent Hiv-1 Infection of Pig-Tailed Macaques. In Proceeding of 30th Annual Meeting of the American Society for Virology, University of Minnesota, Minneapolis, MN, USA, 16-20 July 2011.
[221]
Thippeshappa, R.P.P.; Ruan, H.; Yu-Kimata, M.T.; Siwak, E.B.; Anderson, D.; Wang, W.; Arora, R.; Wen, M.; Zhou, P.; Hu, S-L.; Kimata, J.T. Pig-tail tropic human immunodeficiency virus type 1 is susceptible to innate immune factors compared to pathogenic sivmne. In Proceeding of 29th Annual Symposium on Nonhuman Primate Models for AIDS Seattle, Washington, DC, USA, 28 October 2011.