Soil flooding in wetlands is accompanied by changes in soil physical and chemical characteristics. These changes include the lowering of soil redox potential (Eh) leading to increasing demand for oxygen within the soil profile as well as production of soil phytotoxins that are by-products of soil reduction and thus, imposing potentially severe stress on plant roots. Various methods are utilized for quantifying plant responses to reducing soil conditions that include measurement of radial oxygen transport, plant enzymatic responses, and assessment of anatomical/morphological changes. However, the chemical properties and reducing nature of soil environment in which plant roots are grown, including oxygen demand, and other associated processes that occur in wetland soils, pose a challenge to evaluation and comparison of plant responses that are reported in the literature. This review emphasizes soil-plant interactions in wetlands, drawing attention to the importance of quantifying the intensity and capacity of soil reduction for proper evaluation of wetland plant responses, particularly at the process and whole-plant levels. Furthermore, while root oxygen-deficiency may partially account for plant stress responses, the importance of soil phytotoxins, produced as by-products of low soil Eh conditions, is discussed and the need for development of methods to allow differentiation of plant responses to reduced or anaerobic soil conditions vs. soil phytotoxins is emphasized.
References
[1]
Gambrell, R.P.; Patrick, W.H. Chemical and Microbiological Properties of Anaerobic Soils nad Sediments. In Plant Life in Anaerobic Environments; Hook, D.D., Crawford, R.M.M., Eds.; Ann Arbor Science: Ann Arbor, MI, USA, 1978; pp. 375–423.
[2]
Ponnamperuma, F.N. Effects of Flooding on Soils. In Flooding and Plant Growth; Kozlowski, T.T., Ed.; Academic Press Inc.: Orlando, FL, USA, 1984; pp. 1–44.
[3]
Gambrell, R.P.; DeLaune, R.D.; Patrick, W.H. Redox Processes in Soils Following Oxygen Depletion. In Plant Life Under Oxygen Deprivation: Ecology, Physiology, and Biochemistry; Jackson, M.B., Davies, D.D., Lambers, H., Eds.; SPB Academic Publishing BV: The Hague, The Netherlands, 1991; pp. 101–117.
[4]
Jackson, M.B.; Drew, M.C. Effects of Flooding on Growth and Metabolism of Herbaceous Plants. In Flooding and Plant Growth; Kozlowski, T.T., Ed.; Academic Press, Inc: Waltham, MA, USA, 1984; pp. 47–128.
[5]
Greenway, H.; Armstrong, W.; Colmer, T.D. Coditions leading to high CO2 (>5 kPa) in waterlogged flooded soils and possible effects on root growth and metabolism. Ann. Bot. 2006, 98, 9–32.
[6]
Ponnamperuma, F.N. The chemistry of submerged soil. Adv. Agron. 1972, 24, 29–96.
[7]
DeLaune, R.D.; Pezeshki, S.R.; Pardue, J.H. An oxidation-reduction buffer for evaluating physiological response of plants to root oxygen stress. Environ. Exp. Bot. 1990, 30, 243–247, doi:10.1016/0098-8472(90)90070-K.
[8]
Patrick, W.H.; DeLaune, R.D. Chemical and biological redox systems affecting nutrient availability in the coastal wetlands. Geosci. Man 1977, XVIII, 131–137.
[9]
Reddy, K.R.; DeLaune, R.D. Biogeochemistry of Wetalnds: Science and Applications; CRC Press: Boca Raton, FL, USA, 2008; p. 774.
[10]
Pearsall, W.H.; Mortimer, C.H. Oxidation-reduction potentials in waterlogged soils, natural waters and muds. J. Ecol. 1939, 27, 483–501, doi:10.2307/2256375.
[11]
Mortimer, C.H. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 1941, 29, 280–329.
[12]
Mitsch, W.J.; Gosselink, J.G. Wetlands, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; p. 582.
[13]
Kludze, H.K.; DeLaune, R.D. Straw application effects on Methane and oxygen exchange and growth in rice. Soil Sci. Soc. Am. J. 1995, 59, 824–830.
[14]
Kludze, H.K.; DeLaune, R.D. Gaseous exchange and wetland plant response to soil redox intensity and capacity. Soil Sci. Soc. Am. J. 1995, 59, 939–945.
[15]
Kludze, H.K. Gaseous exchange and wetland plant response to soil redox conditions. Ph.D. Dissertation, Louisiana State University, Baton Rouge, LA, USA, 1994.
[16]
Kludze, H.K.; DeLaune, R.D.; Patrick, W.H. Aerenchyma formation and methane and oxygen exchange in rice. Soil. Sci. Soc. Am. J. 1993, 51, 386–391.
[17]
Kludze, H.K.; Pezeshki, S.R.; DeLaune, R.D. Evaluation of root oxygenation and growth in baldcypress in response to short-term soil hypoxia. Can. J. For. Res. 1994, 24, 804–809, doi:10.1139/x94-105.
[18]
Sorrell, B.K.; Brix, H.; Orr, P.T. Oxygen exchange by entire root system of Cyperus involucratus and Eleocharis sphacelata. J. Aquat. Plant Manage. 1993, 31, 24–28.
[19]
Armstrong, W.; Brandle, R.; Jackson, M.B. Mechanisms of flood tolerance in plants. Acta Bot. Neerl. 1994, 43, 307–358.
[20]
Armstrong, J.; Armstrong, W.; Beckett, P.M.; Halder, J.E.; Lythe, S.; Holt, R.; Sinclair, A. Pathways of aeration and the mechanisms and beneficial effects of humidity- and venturi-induced convections in Phragmites australis. Aquat. Bot. 1996, 54, 177–197, doi:10.1016/0304-3770(96)01044-3.
[21]
Armstrong, J.; Armstrong, W.; van Der Putten, W.H. Phragmites die-back: Bud and root death, blockage within the aeration and vascular systems and the possible role of phytotoxins. New Phytol. 1996, 133, 399–414.
[22]
Pezeshki, S.R. Plant Responses to Flooding. In Plant-Environment Interactions; Wilkinson, R.E., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 1994; pp. 289–321.
Sorrell, B.K. Effect of external oxygen demand on radia oxygen loss by Juncus roots in titanium citrate solutions. PlantCell Environ. 1999, 22, 1587–1593.
[25]
Van Wijck, C.; de Groot, C.J.; Grillas, P. The effect of anaerobic sediment on the growth of Potamogeton pectinatus: The role of organic matter, sulphide, and ferrous iron. Aquat. Bot. 1992, 44, 31–49, doi:10.1016/0304-3770(92)90079-X.
[26]
Laskov, C.; Horn, O.; Hupfer, M. Environmental factors regulating the radial oxygen loss from roots of Myriophyllum spicatum and Potamogeton crispus. Aquat. Bot. 2006, 84, 333–340.
[27]
Armstrong, W.; Wright, E.J.; Lythe, S.; Gaynard, T.J. Plant zonation and the effects of the spring-neap tidal cycle on soil aeration in a humber salt marsh. J. Ecol. 1985, 73, 323–339, doi:10.2307/2259786.
[28]
Pennington, M.R.; Walters, M.B. The response of vegetation zonation and soil redox potential in created wetlands. For. Ecol. Manag. 2006, 233, 1–10, doi:10.1016/j.foreco.2006.04.026.
[29]
Davy, A.J.; Brown, M.J.H.; Mossman, H.L.; Grant, A. Colonization of a newly developing saltmarsh: Disentangling independent effects of elevation and redox potential on halophytes. J. Ecol. 2001, 99, 1350–1357.
[30]
Justin, S.H.F.W.; Armstrong, W. The anatomical characteristics of roots and plant response to soil flooding. New Phytol. 1987, 106, 465–495.
[31]
Pedersen, O.; Sand-Jensen, K. Adaptation of submerged Lobelia dortmanna to aerial life form: Morphology, carbon sources, and oxygen dynamics. Oikos 1992, 65, 89–96, doi:10.2307/3544890.
[32]
Pedersen, O.; Sand-Jensen, K.; Revsbech, N.P. Diel pulses of O2 and CO2 in sandy lake sediments inhabited by Lobelia dortmanna. Ecology 1995, 76, 1536–1545.
Drew, M.C. Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1997, 48, 223–250.
[35]
Hook, D.D.; Crawford, R.M.M. Plant Life in Anaerobic Environments; Ann Arbor Science: Woburn, MA, USA, 1978; p. 564.
[36]
Vartapetian, B.B.; Jackson, M.B. Plant adaptations to anaerobic stress. Ann. Bot. 1997, 79, 3–20, doi:10.1093/oxfordjournals.aob.a010303.
[37]
Armstrong, W. The relationship between oxidation-reduction potentials and oxygen diffusion levels in some waterlogged organic soils. J. Soil Sci. 1967, 18, 27–34.
[38]
Turner, F.T.; Patrick, W.H. Chemical changes in waterlogged soils as a result of oxygen depletion. Trans. 9th Int. Congr. Soil Sci. 1968, 4, 53–56.
[39]
Armstrong, W.; Armstrong, J.; Beckett, P.M. Pressurized aeration in wetland macrophytes: Some theoretical aspects of humidity-induced convection and thermal transpiration. Folia Geobot. Phytotax. 1996, 31, 25–36, doi:10.1007/BF02803991.
[40]
Greenway, H.; Gibbs, J. Mechanisms of anoxia tolerance in plants: II> Energy requirements for maintenance and energy distribution to essential processes. Funct. Plant Biol. 2003, 30, 999–1036, doi:10.1071/PP98096.
[41]
Voesenek, L.A.C.J.; Colmer, T.D.; Pierik, R.; Millenaar, F.F.; Peeters, A.J.M. How plants cope with submergence. New Phytol. 2006, 170, 213–226.
[42]
DeLaune, R.D.; Smith, C.J.; Patrick, W.H. Nitrogen losses from a Louisiana Gulf Coast salt marsh. Est. Coast. Shelf Sci. 1983, 17, 133–141, doi:10.1016/0272-7714(83)90058-6.
[43]
Armstrong, J.; Drew, M.C. Root Growth and Metabolism under Oxygen Deficiency. In Plant Roots: The Hidden Half; Waisel, Y., Eshel, A., Kafkaf, U., Eds.; Marcel Dekker: New York, NY, USA, 2002; pp. 729–761.
[44]
DeLaune, R.D.; Patrick, W.H.; Buresh, R.J. Sedimentation rates determined by Cs-137 dating in a rapidly accreting salt marsh. Nature 1978, 275, 532–533.
[45]
Drew, M.C.; Lynch, J.M. Soil anaerobiosis, micro-organisms and root functions. Ann. Rev. Phytopathol. 1980, 18, 37–66, doi:10.1146/annurev.py.18.090180.000345.
[46]
King, G.M.; Klug, M.J.; Wiegert, R.G.; Chalmers, A.G. Relation of soil water movement and sulfide concentration to Spartina alterniflora production in a Georgia satlmarsh. Science 1982, 218, 61–63.
[47]
Ingold, A.; Havill, D.C. The influence of sulfide on the distribution of higher plants in salt marshes. J. Ecol. 1984, 72, 1043–1054, doi:10.2307/2259550.
[48]
Havill, D.C.; Ingold, A.; Pearson, J. Sulfide tolerance in coastal halophytes. Vegetatio 1985, 62, 279–285, doi:10.1007/BF00044754.
[49]
Tanaka, A.; Mulleriyawa, R.P.; Yasu, T. Possibility of hydrogen sulfide induced iron toxicity of the rice plant. Soil Sci. Plant Nutr. 1968, 4, 1–6.
[50]
Allam, A.I.; Hollis, J.P. Sulfide inhibition of oxidases in rice roots. Phytopathology 1972, 62, 634–639, doi:10.1094/Phyto-62-634.
[51]
Rao, D.N.; Mikkelsen, D.S. Effects of acidic, propionic, and butyric acids on rice seedling growth and nutrition. Plant Soil 1977, 47, 323–334, doi:10.1007/BF00011491.
[52]
Armstrong, J.; Armstrong, W. Phragmites dieback: Toxic effects of propionic, butyric and caproic acids in relation to pH. New Phytol. 1999, 142, 201–217, doi:10.1046/j.1469-8137.1999.00395.x.
[53]
Atwell, B.J.; Greenway, H. The relationship between growth and oxygen uptake in hypoxic rice seedlings. J. Exp. Bot. 1987, 38, 454–465.
[54]
Armstrong, W. Aeration in higher plants. Adv. Bot. Res. 1979, 7, 225–332, doi:10.1016/S0065-2296(08)60089-0.
Hopkins, W.G.; Huner, N.P. Introduction to Plant Physiology, 4th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2009; p. 503.
[57]
Keeley, J.E. Population differentation along a flood frequency gradient: Physiological adaptation to flooding in Nyssa sylvatica. Ecol. Monogr. 1979, 49, 89–108, doi:10.2307/1942574.
[58]
Mendelssohn, I.A.; McKee, K.L.; Patrick, W.H. Oxygen deficiency in Spartina alterniflora roots: Metabolic adaptation to anoxia. Science 1981, 214, 439–441.
[59]
Crawford, R.M.M. Oxygen availability as an ecological limit to plant distribution. Adv. Ecol. Res. 1992, 23, 93–285, doi:10.1016/S0065-2504(08)60147-6.
Kogawara, S.; Yamanoshita, T.; Norisada, M.; Masumori, M.; Kojima, K. Photosynthesis and photoassimilate transport during root hypoxia in Melaleuca cajuputi, a flood-tolerant species, and in Eucalyptus camadulensis, a moderately floo-tolerant species. Tree Physiol. 2006, 26, 1413–1423, doi:10.1093/treephys/26.11.1413.
[62]
Roberts, J.K.M.; Andrade, F.H.; Anderson, J.C. Further evidence that cytoplasmic acidosis is a determinant of flooding intolerance in plants. Plant Physiol. 1985, 77, 492–494.
[63]
Barmore, C.R. Effect of ethylene on chlorophyllase activity and chlorophyll content in calamond in rind tissue. HortScience 1975, 10, 595–596.
[64]
Berry, J.; Bjorkman, O. Photosynthetic and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 1980, 31, 491–543, doi:10.1146/annurev.pp.31.060180.002423.
[65]
Majumdar, S.; Ghosh, S.; Glick, B.R.; Dumbroff, E.B. Activities of chlorophyllase, phosphoenolpyruvate carboxylase and ribulose-1, 5-bisphosphate carboxylase in the primary leavaes of soybean during senescence and drought. Physiol. Plant 1991, 81, 473–480, doi:10.1111/j.1399-3054.1991.tb05087.x.
[66]
Pezeshki, S.R. Response of baldcypress seedlings to hypoxia: Leaf protein content, ribulose-1, 5-bisphosphate carboxylase/oxygenase activity and photosynthesis. Photosynthetica 1994, 30, 59–68.
[67]
Li, S.; Pezeshki, S.R.; Goodwin, S.; Shields, F.D. Physiological responses of black willow (Salix nigra) cuttings to a range of soil moisture regimes. Photosynthetica 2004, 42, 585–590, doi:10.1007/S11099-005-0017-y.
[68]
Saglio, P.H.; Drew, M.C.; Pradet, A. Metabolic acclimation to anoxia induced by low (2–4 KPa partial pressure) oxygen pretreatment (hypoxia) in root tips of Zea mays. Plant Physiol. 1988, 86, 61–66, doi:10.1104/pp.86.1.61.
[69]
Bertani, A.; Brambilla, I.; Menegus, F. Effect of anaerobiosis on rice seedlings: Growth, metabolic rate and fate of fermentation products. J. Exp. Bot. 1980, 31, 325–331.
[70]
MacDonald, R.C.; Kimmerer, T.W. Metabolism of transpired ethanol by eastern cottonwood (Populus deltoides). Plant Physiol. 1993, 102, 173–179.
[71]
Jackson, M.B. Long-distance signaling from roots to shoots assessed: The flooding story. J. Exp. Bot. 2002, 53, 175–181, doi:10.1093/jexbot/53.367.175.
Hattori, Y.; Nagai, K.; Furukawa, S.; Song, X.; Kawano, R.; Sakakibara, H.; Wu, J.; Matsumoto, T.; Yoshimura, A.; Kitano, H.; et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 2009, 460, 1026–1030.
[74]
McKee, K.L. Growth and physiological responses of neotropical mangrove seedlings to root zone hypoxia. Tree Physiol. 1996, 16, 883–889, doi:10.1093/treephys/16.11-12.883.
[75]
Youssef, T.; Saenger, P. Anatomical adaptive strategies to flooding and rhizophere oxidation in mangrove seedlings. Aust. J. Bot. 1996, 44, 297–313, doi:10.1071/BT9960297.
[76]
Youssef, T.; Saenger, P. Photosynthetic gas exchange and accumulation of phytotoxins in mangrove seedlings in response to soil physico-chemical characteristics associated with waterlogging. Tree Physiol. 1998, 18, 317–324, doi:10.1093/treephys/18.5.317.
[77]
Teal, J.M.; Kanwisher, J.W. Gas transport in the marsh grass Spartina alterniflora. J. Exp. Bot. 1966, 17, 355–361, doi:10.1093/jxb/17.2.355.
[78]
Kozlowski, T.T. Responses of woody plants to flooding and salinity. Tree Physiol. Monogr. 1997, 1, 1–29.
[79]
Armstrong, W.; Justin, S.H.F.W.; Beckett, P.M.; Lythe, S. Root adaptation to soil waterlogging. Aquat. Bot. 1991, 39, 57–73, doi:10.1016/0304-3770(91)90022-W.
[80]
Perata, P.; Alpi, A. Plant responses to anaerobiosis. Plant Sci. 1993, 93, 1–17, doi:10.1016/0168-9452(93)90029-Y.
[81]
Iwanaga, F.; Yamamoto, F. Growth, morphology and photosynthetic activity in flooded Alnus japonica seedlings. J. For. Res. 2007, 12, 243–246, doi:10.1007/s10310-007-0003-2.
[82]
Iwanaga, F.; Yamamoto, F. Effects of flooding depth on growth, morphology and photosynthesis in Alnus japonica species. New For. 2008, 35, 1–14, doi:10.1007/s11056-007-9057-4.
[83]
Dacey, J.W.H. Pressurized ventilation in the yellow water lily. Ecology 1981, 62, 1137–1147, doi:10.2307/1937277.
[84]
Armstrong, W.; Beckett, P.M. Internal aeration and the development of stelar anoxia in submerged roots: A multi-shelled mathematical model combining axial diffusion of oxygen in the cortex with radial losses to the stele, the wall layers, and the rhizosphere. New Phytol. 1987, 105, 221–245, doi:10.1111/j.1469-8137.1987.tb00860.x.
[85]
Luxmoore, R.J.; Sojka, R.E.; Stolzy, L.H. Root porosity and growth responses of wheat to aeration and light intensity. Soil Sci. 1972, 113, 354–357.
[86]
Li, S.; Pezeshki, S.R.; Shields, F.D. Partial flooding enhances aeration in adventitious roots of black willow (Salix nigra) cuttings. J. Plant Physiol. 2006, 163, 619–628, doi:10.1016/j.jplph.2005.06.010.
[87]
Kludze, H.K.; DeLaune, R.D. Methane emission and growth of Spartina patens in response to soil redox intensity. Soil Sci. Soc. Am. J. 1994, 58, 1838–1845.
[88]
Pezeshki, S.R.; Anderson, P.A. Responses of three bottomland woody species with different flood-tolerance capabilities to various flooding regimes. Wetl. Ecol. Manag. 1997, 4, 245–256.
[89]
Brix, H.; Sorrell, B.K. Oxygen stress in wetland plants: Comparison of de-oxygenated and reducing root environments. Funct. Ecol. 1996, 10, 521–526, doi:10.2307/2389945.
[90]
Pezeshki, S.R.; Matthews, S.W.; DeLaune, R.D. Root cortex structure and metabolic response of Spartina patens to soil redox conditions. Environ. Exp. Bot. 1991, 31, 91–97, doi:10.1016/0098-8472(91)90011-C.
[91]
Pezeshki, S.R.; Pardue, J.H.; DeLaune, R.D. The influence of oxygen deficiency and redox potential on alcohol dehydrogenase activity, root porosity, ethylene production and photosynthesis in Spartina patens. Environ. Exp. Bot. 1993, 33, 565–573, doi:10.1016/0098-8472(93)90031-A.
[92]
Pezeshki, S.R.; DeLaune, R.D.; Anderson, P.H. Effect of flooding on elemental uptake and biomass allocation in seedlings of three bottomland tree species. J. Plant Nutr. 1999, 22, 1481–1494, doi:10.1080/01904169909365729.
[93]
DeLaune, R.D.; Pezeshki, S.R.; Lindau, C.W. Influence of soil redox potential on nitrogen uptake and growth of wetland oak seedlings. J. Plant Nutr. 1998, 21, 757–768, doi:10.1080/01904169809365440.
[94]
DeLaune, R.D.; Jugsujinda, A.; Reddy, K.R. Effect of root oxygen stress on phosphorus uptake by cattail. J. Plant Nutr. 1999, 22, 459–466, doi:10.1080/01904169909365643.
[95]
Else, M.; Coupland, A.D.; Dutton, L.; Jackson, M.B. Decreased root hydraulic conductivity reduces leaf water potential, initiates stomatal closure, and slows leaf expansion in flooded plantsof castor oil (Ricinus communis) despite diminished delivery of ABA from roots to shoots in xylem sap. Physiol. Plant 2001, 111, 46–54.
[96]
Jackson, M.B.; Saker, L.R.; Crisp, C.M.; Else, M.A.; Janowiak, F. Ionic and pH signaling from roots to shoots of flooded tomato plants in relation to stomatal closure. Plant Soil 2003, 253, 103–113, doi:10.1023/A:1024588532535.
[97]
Gibbs, J.; Turner, D.W.; Armstrong, W.; Darwent, M.J.; Greenway, H. Response to oxygen deficiency in primary maize roots. I. Development of oxygen deficiency in the stele reduces radial solute transport to the xylem. Aust. J. Plant Physiol. 1998, 25, 745–758, doi:10.1071/PP97135.
[98]
Hook, D.D.; DeBell, D.S.; McKee, W.H.; Askew, J.L. Responses of loblolly pine (mesophyte) and swamp tupelo (hydrophyte) seedlings to soil flooding and phosphorous. Plant Soil 1983, 71, 387–394, doi:10.1007/BF02182680.
Pavanasasivam, V.; Axley, J.H. Influence of flooding on the availability of soil zinc. Commun. Soil Sci. Plant Anal. 1980, 11, 163–174.
[101]
Good, B.G.; Patrick, W.H. Gas composition and respiration of water oak (Quercus nigra) and green ash (Fraxinus pennsylvanica) roots after prolonged flooding. Plant Soil 1987, 97, 419–427, doi:10.1007/BF02383232.
[102]
McKevlin, M.R.; Hook, D.D.; McKee, W.H.; Wallace, S.U.; Woodruff, J.R. Loblolly pine seedling root anatomy and iron accumulation as affected by soil waterlogging. Can. J. For. Res. 1987, 17, 1257–1264, doi:10.1139/x87-195.
[103]
Gries, C.; Kappen, L.; Losch, R. Mechanism of flood tolerance in reed (Phragmites australis). New Phytol. 1990, 114, 589–593, doi:10.1111/j.1469-8137.1990.tb00429.x.
[104]
Armstrong, W. Waterlogged Soils. In Environment and Plant Ecology; Etherington, J.R., Ed.; Wiley: New York, NY, USA, 1975; p. 181.
[105]
Carlson, P.R.; Forresst, J. Uptake of dissolved sulfide by Spartina alterniflora: Evidence from natural sulfur isotope abundance ratios. Science 1982, 216, 633–635.
[106]
Pearson, J.; Havill, D.C. The effect of hypoxia and sulfide on culture grown wetland an non-wetland plants. J. Exp. Bot. 1988, 39, 363–370, doi:10.1093/jxb/39.3.363.
[107]
Pezeshki, S.R.; DeLaune, R.D.; Pan, S.Z. Relationship of soil hydrogen sulfide level to net carbon assimilation of Panicum hemitomon and Spartina patens. Vegetatio 1991, 95, 159–166.
[108]
Shimazaki, K.; Sugahara, K. Inhibition site of the electron transport system in lettuce chloroplasts by fumigation of leaves with SO2. Plant Cell Physiol. 1980, 21, 125–135.
[109]
Wellburn, A.R.; Higginson, C.; Robinson, D.; Walmsley, C. Biochemical explanations of more than additive inhibitory effects of low atmospheric levels of sulphur dioxide plus nitrogen dioxide upon plants. New Phystol. 1981, 88, 223–237, doi:10.1111/j.1469-8137.1981.tb01719.x.
[110]
Garsed, S.G. The use of sulfite solution for studying the effects of SO2 on higher plants. Environ. Pollut. Ser. 1981, 24, 883–886.
[111]
Khan, A.A.; Malhotra, S.S. Ribulose bisphosphate carboxylase and glycollate oxidase from jack pine: Effects of sulphur dioxide fumigation. Phytochemistry 1982, 21, 2607–2612.
[112]
Dropff, M.J. Physiological effects of sulfide dioxide: 1. The effect of SO2 on photosynthesis and stomatal regulation of Vicia faba L.. Plant Cell Environ. 1987, 10, 753–760.
[113]
Furtig, K.; Ruegsegger, A.; Brunhold, C.; Brandle, R. Sulfide utilization and injuries in hypoxic roots and rhizomes of Common Reed (Phragmites australis). Folia Geobot. Phytotax. 1996, 31, 143–151, doi:10.1007/BF02804003.
[114]
DeLaune, R.D.; Smith, C.J.; Patrick, W.H. Relationship of marsh elevation, redox potential and sulfide to Spartina alterniflora productivity. Soil Sci. Soc. Am. J. 1983, 47, 930–935, doi:10.2136/sssaj1983.03615995004700050018x.
[115]
Everard, J.D.; Drew, M.C. Mechanisms controlling changes in water movement through the roots of Helianthus annuus L. during continuous exposure to oxygen deficiency. J. Exp. Bot. 1989, 40, 95–103, doi:10.1093/jxb/40.1.95.
[116]
Else, M.A.; Janowiak, F.; Atkinson, C.J.; Jackson, M.B. Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants. Ann. Bot. 2009, 103, 313–323.
[117]
Pociecha, E.; Koscielniak, J.; Filek, W. Effects of root flooding and stage of development on the growth and photosynthesis of field bean (Vicia faba L. minor). Acta Physiol. Plant. 2008, 30, 529–535.
[118]
Naumann, J.C.; Young, D.R.; Anderson, J.E. Leaf chlorophyll fluorescence and physiological response to freshwater and saltwater flooding in the evergreen shrub, Myrica cerifera. Environ. Exp. Bot. 2008, 63, 402–409.
[119]
Hiron, R.W.P.; Wright, S.T.C. The role of endogenous abscisic acid in the response of plants to stress. J. Exp. Bot. 1973, 24, 769–781.
[120]
Pereira, J.S.; Kozlowski, T.T. Variation among woody angiosperms in response to flooding. Physiol. Plant. 1977, 41, 184–192.
[121]
Sena Gomes, A.R.; Kozlowski, T.T. Responses of Melaleuca quinquenervia seedlings to flooding. Physiol. Plant 1980, 49, 373–377, doi:10.1111/j.1399-3054.1980.tb03319.x.
[122]
Tang, Z.C.; Kozlowski, T.T. Some physiological and morphological responses of Quercus macrocarpa seedlings to flooding. Can. J. For. Res. 1982, 12, 196–202, doi:10.1139/x82-030.
[123]
Pezeshki, S.R.; Chambers, J.L. Stomatal and photosynthetic response of sweetgum (Liquidambar styraciflua L.) to flooding. Can. J. For. Res. 1985, 15, 371–375, doi:10.1139/x85-059.
[124]
Pezeshki, S.R.; Chambers, J.L. Response of cherrybark oak (Quercus falcata var. pagodaefolia) seedlings to short-term flooding. For. Sci. 1985, 31, 760–771.
[125]
Pezeshki, S.R.; DeLaune, R.D.; Patrick, W.H. Differential Response of selected mangroves to soil flooding and salinity: Gas exchange and biomass partitioning. Can. J. For. Res. 1990, 20, 869–874, doi:10.1139/x90-116.
[126]
Pezeshki, S.R.; DeLaune, R.D.; Meeder, J.F. Carbon assimilation and biomass partitioning in Avicennia germinans and Rhizophora mangle seedlings in response to soil redox conditions. Environ. Exp. Bot. 1997, 37, 161–171.
[127]
Pezeshki, S.R. Differences in patterns of photosynthetic responses to hypoxia in flood-tolerant and flood-sensitive tree species. Phtosynthetica 1993, 28, 423–430.
[128]
Krauss, K.W.; Doyle, T.W.; Howard, R.J. Is there evidence of adaptation to tidal flooding in saplings of baldcypress subjected to different salinity regimes? Environ. Exp. Bot. 2009, 67, 118–126, doi:10.1016/j.envexpbot.2009.05.005.
[129]
Gravatt, D.A.; Kirby, C.J. Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding. Tree Physiol. 1998, 18, 411–417, doi:10.1093/treephys/18.6.411.
[130]
Mielke, M.S.; Shaffer, B. Leaf gas exchange, chlorophyll fluorescence and pigment indexes of Eugenia uniflora L. in response to changes in light intensity and soil flooding. Tree Physiol. 2010, 30, 45–55, doi:10.1093/treephys/tpp095.
[131]
Pezeshki, S.R.; DeLaune, R.D.; Patrick, W.H. Effect of fluctuating rhizosphere redox potential on carbon assimilation of Spartina alterniflora. Oecologia 1989, 80, 132–135.
[132]
Brown, C.E.; Pezeshki, S.R. A study on waterlogging as a potential silvicultural tool to control Ligustrum sinense populations in western Tennessee. Wetlands 2000, 20, 429–437.
[133]
Taylor, G.E.; Gunderson, C.A. Physiological site of ethylene effects on carbon dioxide assimilation in Glycine max. Plant Physiol. 1988, 86, 85–92, doi:10.1104/pp.86.1.85.
[134]
Wample, R.L.; Thornton, R.K. Differences in the response of sunflower (Helanthus annuus) subjected to flooding and drought stress. Physiol. Plant 1984, 61, 611–616.
[135]
Pezeshki, S.R.; Santos, M.I. Relationship among rhizosphere oxygen deficiency, root restriction, photosynthesis and growth in baldcypress (Taxodium distichum) seedlings. Photosynthetica 1998, 35, 381–390, doi:10.1023/A:1006912318352.
[136]
Ahmed, S.; Nawata, E.; Sakuratania, T. Changes of endogenous ABA and ACC and their correlation to photosynthesis and water relations in mugbean (Vigna radiate) during waterlogging. Environ. Exp. Bot. 2006, 57, 278–284.
[137]
McKevlin, M.R.; Hook, D.D.; McKee, W.H. Growth and nutrient use efficiency of water tupelo seedlings in flooded and well drained soil. Tree Physiol. 1995, 15, 753–758.
[138]
Bowes, G. Growth at elevated CO2: Photosynthetic responses mediated through rubisco. Plant Cell Environ. 1991, 14, 795–806, doi:10.1111/j.1365-3040.1991.tb01443.x.
[139]
Vu, J.C.V.; Yelenosky, G. Photosynthetic responses of rough lemon and sour orange to soil flooding, chilling and short-term temperature fluctuation during growth. Environ. Exp. Bot. 1992, 32, 471–477, doi:10.1016/0098-8472(92)90060-F.
[140]
Liao, C.T.; Lin, C.H. Effect of flooding stress on photosynthetic activities of Momordica charantia. Plant Physiol. Biochem. 1994, 32, 479–485.
[141]
Dann, M.S.; Pell, E.J. Decline of activity and quantity of ribulose bisphosphate carboxylase/owygenase and net photosynthesis in ozone-treated potato foliage. Plant Physiol. 1989, 91, 427–432, doi:10.1104/pp.91.1.427.
Li, S.; Goodwin, S.; Pezeshki, S.R. Photosynthetic gene expression in black willow under various soil moisture regimes. Biol. Plant 2007, 51, 593–596, doi:10.1007/s10535-007-0130-9.
[144]
Sij, J.W.; Swanson, C.A. Effect of petiole anoxia on phloem transport in squash. Plant Physiol. 1973, 51, 368–371, doi:10.1104/pp.51.2.368.
[145]
Qureshi, F.A.; Spanner, D.C. The effect of nitrogen on the movement of tracers down the stolon of Saxifraga sarmentosa with some observations on the influence of light. Planta 1973, 110, 131–144, doi:10.1007/BF00384835.
[146]
Vartapetian, B.B. Flood-Sensitive Plants under Primary and Secondary Anoxia: Ultrastructural and Metabolic Responses. In Plant Life Under Oxygen Deprivation; Jackson, M.B., Davies, D.D., Lambers, H., Eds.; SPB Academic Publishing: The Hague, The Netherlands, 1991; pp. 201–216.
[147]
Kennedy, R.A.; Fox, T.C.; Everard, J.D.; Rumpho, M.E. Biochemical Adaptations to Anoxia: Potential Role of Mitochondrial Metabolism to Flood Tolerance in Echinochloa Phyllopogon (Barnyard Grass). In Plant Life Under Oxygen Deprivation; Jackson, M.B., Davies, D.D., Lambers, H., Eds.; SPB Academic Publishing: The Hague, The Netherlands, 1991; pp. 217–227.
[148]
Yamamoto, F.; Kozlowski, T.T. Effect of flooding, tilting of stem, and ethrel application on growth, stem anatomy, and ethylene production of Acer platanoides seedlings. Scand. J. For. Res. 1987, 2, 141–156, doi:10.1080/02827588709382453.
[149]
Yamamoto, F.; Sakata, T.; Terazawa, K. Growth, morphology, stem anatomy and ethylene production in flooded Alnus japonica seedlings. IAWA J. 1995, 16, 47–59.
[150]
Yamamoto, F.; Sakata, T.; Terazawa, K. Physiological, anatomical and morphological responses of Fraxinus mandshurica seedlings to flooding. Tree Physiol. 1995, 15, 713–719.
[151]
Webb, T.; Armstrong, W. The effects of anoxia and carbohydrates on the growth and viability of rice, pea and pumpkin roots. J. Exp. Bot. 1983, 34, 579–603, doi:10.1093/jxb/34.5.579.
[152]
Pezeshki, S.R. Root responses of flood-tolerant and flood-sensitive tree species to soil redox conditions. Trees 1991, 5, 180–186.
[153]
Pezeshki, S.R.; DeLaune, R.D. Influence of sediment oxidation-reduction potential on root elongation in Spartina patens. Acta Oecologia 1990, 11, 377–383.
[154]
Bertani, A.; Brambilla, I. Effect of decreasing oxygen concentration on wheat roots: Growth and induction of anaerobic metabolism. Z. Pflanzenphysiol. 1982, 108, 283–288.
[155]
Lissner, J.; Mendelssohn, I.A.; Anastasiou, C.J. A method for cultivating plants under controlled redox intensities in hydroponics. Aquat. Bot. 2003, 76, 93–108, doi:10.1016/S0304-3770(03)00017-2.
[156]
Will, R.E.; Seiler, J.R.; Feret, P.P.; Aust, W.M. Effects of rhizosphere inundation on the growth and physiology of wet and dry -site Acer rubrum (red maple) populations. Am. Midl. Nat. 1995, 134, 127–139, doi:10.2307/2426490.
[157]
Pezeshki, S.R.; DeLaune, R.D.; Kludze, H.K.; Choi, H.S. A comparative study of gas exchange characteristics of cattail (Typha domingensis) and sawgrass (Cladium jamaicense) to soil redox conditions. Aquat. Bot. 1996, 54, 25–35.
[158]
Pezeshki, S.R.; DeLaune, R.D. Responses of seedlings of selected woody species to soil oxidation-reduction conditions. Environ. Exp. Bot. 1998, 40, 123–133, doi:10.1016/S0098-8472(98)00026-4.
[159]
Anderson, P.H.; Pezeshki, S.R. The effects of intermittent flooding on seedlings of three forest species. Photosynthetica 1999, 37, 543–552.
[160]
Elcan, J.M.; Pezeshki, S.R. Effects of flooding on susceptibility of Taxodium distichum seedlings to drought. Photosynthetica 2002, 40, 177–182, doi:10.1023/A:1021381204684.