全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biology  2012 

The Surprising Role of Amyloid Fibrils in HIV Infection

DOI: 10.3390/biology1010058

Keywords: SEVI, amyloid, HIV infectivity, PAP85-120, SEM1, SEM2, microbicide

Full-Text   Cite this paper   Add to My Lib

Abstract:

Despite its discovery over 30 years ago, human immunodeficiency virus (HIV) continues to threaten public health worldwide. Semen is the principal vehicle for the transmission of this retrovirus and several endogenous peptides in semen, including fragments of prostatic acid phosphatase (PAP248-286 and PAP85-120) and semenogelins (SEM1 and SEM2), assemble into amyloid fibrils that promote HIV infection. For example, PAP248-286 fibrils, termed SEVI (Semen derived Enhancer of Viral Infection), potentiate HIV infection by up to 10 5-fold. Fibrils enhance infectivity by facilitating virion attachment and fusion to target cells, whereas soluble peptides have no effect. Importantly, the stimulatory effect is greatest at low viral titers, which mimics mucosal transmission of HIV, where relatively few virions traverse the mucosal barrier. Devising a method to rapidly reverse fibril formation (rather than simply inhibit it) would provide an innovative and urgently needed preventative strategy for reducing HIV infection via the sexual route. Targeting a host-encoded protein conformer represents a departure from traditional microbicidal approaches that target the viral machinery, and could synergize with direct antiviral approaches. Here, we review the identification of these amyloidogenic peptides, their mechanism of action, and various strategies for inhibiting their HIV-enhancing effects.

References

[1]  Ascher, M.S.; Sheppard, H.W.; Winkelstein, W., Jr.; Vittinghoff, E. Aetiology of AIDS. Lancet 1993, 341, 1223.
[2]  Schechter, M.T.; Craib, K.J.; Montaner, J.S.; Lee, T.N.; O’Shaughnessy, M.V.; Gelmon, K.A. Aetiology of AIDS. Lancet 1993, 341, 1222–1223.
[3]  Weiss, R.A. How does HIV cause AIDS? Science 1993, 260, 1273–1279.
[4]  Weiss, R.A.; Jaffe, H.W. Duesberg, HIV and AIDS. Nature 1990, 345, 659–660, doi:10.1038/345659a0.
[5]  UNAIDS. Global Report: UNAIDS Report on the Global AIDS Epidemic 2010; UNAIDS: Geneva, Switzerland, 2010; pp. 1–359.
[6]  Royce, R.A.; Sena, A.; Cates, W., Jr.; Cohen, M.S. Sexual transmission of HIV. N. Engl. J. Med. 1997, 336, 1072–1078, doi:10.1056/NEJM199704103361507.
[7]  Gray, R.H.; Wawer, M.J.; Brookmeyer, R.; Sewankambo, N.K.; Serwadda, D.; Wabwire-Mangen, F.; Lutalo, T.; Li, X.; van Cott, T.; Quinn, T.C. Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai, Uganda. Lancet 2001, 357, 1149–1153.
[8]  Pilcher, C.D.; Tien, H.C.; Eron, J.J., Jr.; Vernazza, P.L.; Leu, S.Y.; Stewart, P.W.; Goh, L.E.; Cohen, M.S. Brief but efficient: Acute HIV infection and the sexual transmission of HIV. J. Infect. Dis. 2004, 189, 1785–1792, doi:10.1086/386333.
[9]  Dimitrov, D.S.; Willey, R.L.; Sato, H.; Chang, L.J.; Blumenthal, R.; Martin, M.A. Quantitation of human immunodeficiency virus type 1 infection kinetics. J. Virol. 1993, 67, 2182–2190.
[10]  Rusert, P.; Fischer, M.; Joos, B.; Leemann, C.; Kuster, H.; Flepp, M.; Bonhoeffer, S.; Gunthard, H.F.; Trkola, A. Quantification of infectious HIV-1 plasma viral load using a boosted in vitro infection protocol. Virology 2004, 326, 113–129, doi:10.1016/j.virol.2004.05.022.
[11]  Chuck, A.S.; Clarke, M.F.; Palsson, B.O. Retroviral infection is limited by Brownian motion. Hum. Gen. Ther. 1996, 7, 1527–1534, doi:10.1089/hum.1996.7.13-1527.
[12]  Eckert, D.M.; Kim, P.S. Mechanisms of viral membrane fusion and its inhibition. Annu. Rev. Biochem. 2001, 70, 777–810, doi:10.1146/annurev.biochem.70.1.777.
[13]  Orloff, G.M.; Orloff, S.L.; Kennedy, M.S.; Maddon, P.J.; McDougal, J.S. Penetration of CD4 T cells by HIV-1. The CD4 receptor does not internalize with HIV, and CD4-related signal transduction events are not required for entry. J. Immunol. 1991, 146, 2578–2587.
[14]  Galvin, S.R.; Cohen, M.S. The role of sexually transmitted diseases in HIV transmission. Nat. Rev. Microbiol. 2004, 2, 33–42, doi:10.1038/nrmicro794.
[15]  Kim, K.A.; Yolamanova, M.; Zirafi, O.; Roan, N.R.; Staendker, L.; Forssmann, W.G.; Burgener, A.; Dejucq-rainsford, N.; Hahn, B.H.; Shaw, G.M.; Greene, W.C.; Kirchhoff, F.; Münch, J. Semen-mediated enhancement of HIV infection is donor-dependent and correlates with the levels of SEVI. Retrovirology 2010, 7, 55.
[16]  Munch, J.; Rucker, E.; Standker, L.; Adermann, K.; Goffinet, C.; Schindler, M.; Wildum, S.; Chinnadurai, R.; Rajan, D.; Specht, A.; Gimenez-Gallego, G.; Sanchez, P.C.; Fowler, D.M.; Koulov, A.; Kelly, J.W.; Mothes, W.; Grivel, J.C.; Margolis, L.; Keppler, O.T.; Forssmann, W.G.; Kirchhoff, F. Semen-derived amyloid fibrils drastically enhance HIV infection. Cell 2007, 131, 1059–1071, doi:10.1016/j.cell.2007.10.014.
[17]  Olsen, J.S.; Brown, C.; Capule, C.C.; Rubinshtein, M.; Doran, T.M.; Srivastava, R.K.; Feng, C.; Nilsson, B.L.; Yang, J.; Dewhurst, S. Amyloid binding small molecules efficiently block SEVI and semen mediated enhancement of HIV-1 infection. J. Biol. Chem. 2010, 285, 35488–35496.
[18]  Roan, N.R.; Greene, W.C. A seminal finding for understanding HIV transmission. Cell 2007, 131, 1044–1046, doi:10.1016/j.cell.2007.11.030.
[19]  Roan, N.R.; Munch, J.; Arhel, N.; Mothes, W.; Neidleman, J.; Kobayashi, A.; Smith-McCune, K.; Kirchhoff, F.; Greene, W.C. The cationic properties of SEVI underlie its ability to enhance human immunodeficiency virus infection. J. Virol. 2009, 83, 73–80.
[20]  Ronnberg, L.; Vihko, P.; Sajanti, E.; Vihko, R. Clomiphene citrate administration to normogonadotropic subfertile men: Blood hormone changes and activation of acid phosphatase in seminal fluid. Int. J. Androl. 1981, 4, 372–378, doi:10.1111/j.1365-2605.1981.tb00721.x.
[21]  Wurm, M.; Schambach, A.; Lindemann, D.; Hanenberg, H.; Standker, L.; Forssmann, W.G.; Blasczyk, R.; Horn, P.A. The influence of semen-derived enhancer of virus infection on the efficiency of retroviral gene transfer. J. Gene Med. 2010, 12, 137–146.
[22]  Cushman, M.; Johnson, B.S.; King, O.D.; Gitler, A.D.; Shorter, J. Prion-like disorders: Blurring the divide between transmissibility and infectivity. J. Cell Sci. 2010, 123, 1191–1201, doi:10.1242/jcs.051672.
[23]  Wojtowicz, W.M.; Farzan, M.; Joyal, J.L.; Carter, K.; Babcock, G.J.; Israel, D.I.; Sodroski, J.; Mirzabekov, T. Stimulation of enveloped virus infection by beta-amyloid fibrils. J. Biol. Chem. 2002, 277, 35019–35024.
[24]  Caughey, B.; Lansbury, P.T. Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 2003, 26, 267–298, doi:10.1146/annurev.neuro.26.010302.081142.
[25]  Morimoto, R.I. Stress, aging, and neurodegenerative disease. N. Engl. J. Med. 2006, 355, 2254–2255, doi:10.1056/NEJMcibr065573.
[26]  Skovronsky, D.M.; Lee, V.M.; Trojanowski, J.Q. Neurodegenerative diseases: New concepts of pathogenesis and their therapeutic implications. Annu. Rev. Pathol. 2006, 1, 151–170, doi:10.1146/annurev.pathol.1.110304.100113.
[27]  Dobson, C.M. Protein folding and misfolding. Nature 2003, 426, 884–890, doi:10.1038/nature02261.
[28]  Fandrich, M.; Fletcher, M.A.; Dobson, C.M. Amyloid fibrils from muscle myoglobin. Nature 2001, 410, 165–166.
[29]  Fowler, D.M.; Koulov, A.V.; Alory-Jost, C.; Marks, M.S.; Balch, W.E.; Kelly, J.W. Functional amyloid formation within mammalian tissue. PLoS Biol. 2006, 4, e6, doi:10.1371/journal.pbio.0040006.
[30]  Fowler, D.M.; Koulov, A.V.; Balch, W.E.; Kelly, J.W. Functional amyloid—From bacteria to humans. Trends Biochem. Sci. 2007, 32, 217–224, doi:10.1016/j.tibs.2007.03.003.
[31]  Si, K.; Choi, Y.B.; White-Grindley, E.; Majumdar, A.; Kandel, E.R. Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell 2010, 140, 421–435, doi:10.1016/j.cell.2010.01.008.
[32]  Watt, B.; van Niel, G.; Fowler, D.M.; Hurbain, I.; Luk, K.C.; Stayrook, S.E.; Lemmon, M.A.; Raposo, G.; Shorter, J.; Kelly, J.W.; Marks, M.S. N-terminal domains elicit formation of functional Pmel17 amyloid fibrils. J. Biol. Chem. 2009, 284, 35543–35555.
[33]  Shorter, J.; Lindquist, S. Prions as adaptive conduits of memory and inheritance. Nat. Rev. Genet. 2005, 6, 435–450, doi:10.1038/nrg1616.
[34]  True, H.L.; Lindquist, S.L. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 2000, 407, 477–483.
[35]  Halfmann, R.; Jarosz, D.F.; Jones, S.K.; Chang, A.; Lancaster, A.K.; Lindquist, S. Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 2012, 482, 363–368.
[36]  Suzuki, G.; Shimazu, N.; Tanaka, M. A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science 2012, 336, 355–359, doi:10.1126/science.1219491.
[37]  Barnhart, M.M.; Chapman, M.R. Curli biogenesis and function. Annu. Rev. Microbiol. 2006, 60, 131–147, doi:10.1146/annurev.micro.60.080805.142106.
[38]  Eanes, E.D.; Glenner, G.G. X-ray diffraction studies on amyloid filaments. J. Histochem. Cytochem. 1968, 16, 673–677, doi:10.1177/16.11.673.
[39]  Nelson, R.; Eisenberg, D. Structural models of Amyloid–Like fibrils. Adv. Protein Chem. 2006, 73, 235–282, doi:10.1016/S0065-3233(06)73008-X.
[40]  Sunde, M.; Blake, C. The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv. Protein Chem. 1997, 50, 123–159, doi:10.1016/S0065-3233(08)60320-4.
[41]  Roan, N.R.; Sowinski, S.; Munch, J.; Kirchhoff, F.; Greene, W.C. Aminoquinoline surfen inhibits the action of SEVI (semen-derived enhancer of viral infection). J. Biol. Chem. 2010, 285, 1861–1869.
[42]  Arcasoy, S.M.; Latoche, J.D.; Gondor, M.; Pitt, B.R.; Pilewski, J.M. Polycations increase the efficiency of adenovirus-mediated gene transfer to epithelial and endothelial cells in vitro. Gene Ther. 1997, 4, 32–38.
[43]  Davis, H.E.; Morgan, J.R.; Yarmush, M.L. Polybrene increases retrovirus gene transfer efficiency by enhancing receptor-independent virus adsorption on target cell membranes. Biophys. Chem. 2002, 97, 159–172, doi:10.1016/S0301-4622(02)00057-1.
[44]  Brender, J.R.; Nanga, R.P.; Popovych, N.; Soong, R.; Macdonald, P.M.; Ramamoorthy, A. The amyloidogenic SEVI precursor, PAP248–286, is highly unfolded in solution despite an underlying helical tendency. Biochim. Biophys. Acta 2011, 1808, 1161–1169, doi:10.1016/j.bbamem.2011.01.010.
[45]  Nanga, R.P.R.; Brender, J.R.; Vivekanandan, S.; Popovych, N.; Ramamoorthy, A. NMR structure in a membrane environment reveals putative amyloidogenic regions of the SEVI precursor peptide PAP248-286. J. Am. Chem. Soc. 2009, 131, 17972–17979.
[46]  Sievers, S.A.; Karanicolas, J.; Chang, H.W.; Zhao, A.; Jiang, L.; Zirafi, O.; Stevens, J.T.; Munch, J.; Baker, D.; Eisenberg, D. Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature 2011, 475, 96–100.
[47]  Tompa, P. Structural disorder in amyloid fibrils: Its implication in dynamic interactions of proteins. FEBS J. 2009, 276, 5406–5415, doi:10.1111/j.1742-4658.2009.07250.x.
[48]  Arnold, F.; Schnell, J.; Zirafi, O.; Sturzel, C.; Meier, C.; Weil, T.; Standker, L.; Forssmann, W.G.; Roan, N.R.; Greene, W.C.; Kirchhoff, F.; Munch, J. Naturally occurring fragments from two distinct regions of the prostatic acid phosphatase form amyloidogenic enhancers of HIV infection. J. Virol. 2012, 86, 1244–1249.
[49]  Roan, N.R.; Muller, J.A.; Liu, H.; Chu, S.; Arnold, F.; Sturzel, C.M.; Walther, P.; Dong, M.; Witkowska, H.E.; Kirchhoff, F.; Munch, J.; Greene, W.C. Peptides released by physiological cleavage of semen coagulum proteins form amyloids that enhance HIV infection. Cell Host Microbe 2011, 10, 541–550, doi:10.1016/j.chom.2011.10.010.
[50]  Cutler, B.; Justman, J. Vaginal microbicides and the prevention of HIV transmission. Lancet Infect. Dis. 2008, 8, 685–697, doi:10.1016/S1473-3099(08)70254-8.
[51]  Klasse, P.J.; Shattock, R.; Moore, J.P. Antiretroviral drug-based microbicides to prevent HIV-1 sexual transmission. Annu. Rev. Med. 2008, 59, 455–471, doi:10.1146/annurev.med.59.061206.112737.
[52]  Garg, A.B.; Nuttall, J.; Romano, J. The future of HIV microbicides: Challenges and opportunities. Antivir. Chem. Chemother. 2009, 19, 143–150.
[53]  Clavel, F.; Hance, A.J. HIV drug resistance. N. Engl. J. Med. 2004, 350, 1023–1035.
[54]  Callahan, L.N.; Phelan, M.; Mallinson, M.; Norcross, M.A. Dextran sulfate blocks antibody binding to the principal neutralizing domain of human immunodeficiency virus type 1 without Interfering with gpl20-CD4 interactions. J. Virol. 1991, 65, 1543–1550.
[55]  Rider, C.C. The potential for heparin and its derivatives in the therapy and prevention of HIV-1 infection. Glycoconj. J. 1997, 14, 639–642, doi:10.1023/A:1018596728605.
[56]  Witvrouw, M.; de Clercq, E. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen. Pharmacol. 1997, 29, 497–511, doi:10.1016/S0306-3623(96)00563-0.
[57]  Luscher-Mattli, M. Polyanions—A lost chance in the fight against HIV and other virus diseases? Antivir. Chem. Chemother. 2000, 11, 249–259.
[58]  van de Wijgert, J.H.; Shattock, R.J. Vaginal microbicides: Moving ahead after an unexpected setback. Aids 2007, 21, 2369–2376, doi:10.1097/QAD.0b013e3282ef83fd.
[59]  Lanza, T.J.; Durette, P.L.; Rollins, T.; Siciliano, S.; Cianciarulo, D.N.; Kobayashi, S.V.; Caldwell, C.G.; Springer, M.S.; Hagmann, W.K. Substituted 4,6-diaminoquinolines as inhibitors of C5a receptor binding. J. Med. Chem. 1992, 35, 252–258.
[60]  Schuksz, M.; Fuster, M.M.; Brown, J.R.; Crawford, B.E.; Ditto, D.P.; Lawrence, R.; Glass, C.A.; Wang, L.; Tor, Y.; Esko, J.D. Surfen, a small molecule antagonist of heparan sulfate. Proc. Natl. Acad. Sci. USA 2008, 105, 13075–13080.
[61]  Capule, C.C.; Brown, C.; Olsen, J.S.; Dewhurst, S.; Yang, J. Oligovalent amyloid-binding agents reduce SEVI-mediated enhancement of HIV-1 infection. J. Am. Chem. Soc. 2012, 134, 905–908.
[62]  Olzscha, H.; Schermann, S.M.; Woerner, A.C.; Pinkert, S.; Hecht, M.H.; Tartaglia, G.G.; Vendruscolo, M.; Hayer-Hartl, M.; Hartl, F.U.; Vabulas, R.M. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 2011, 144, 67–78, doi:10.1016/j.cell.2010.11.050.
[63]  Alavez, S.; Vantipalli, M.C.; Zucker, D.J.; Klang, I.M.; Lithgow, G.J. Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan. Nature 2011, 472, 226–229.
[64]  Sawaya, M.R.; Sambashivan, S.; Nelson, R.; Ivanova, M.I.; Sievers, S.A.; Apostol, M.I.; Thompson, M.J.; Balbirnie, M.; Wiltzius, J.J.; McFarlane, H.T.; Madsen, A.O.; Riekel, C.; Eisenberg, D. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 2007, 447, 453–457.
[65]  Goldschmidt, L.; Teng, P.K.; Riek, R.; Eisenberg, D. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc. Natl. Acad. Sci. USA 2010, 107, 3487–3492.
[66]  Moravcevic, K.; Mendrola, J.M.; Schmitz, K.R.; Wang, Y.H.; Slochower, D.; Janmey, P.A.; Lemmon, M.A. Kinase associated-1 domains drive MARK/PAR1 kinases to membrane targets by binding acidic phospholipids. Cell 2010, 143, 966–977, doi:10.1016/j.cell.2010.11.028.
[67]  Scheibel, T.; Parthasarathy, R.; Sawicki, G.; Lin, X.M.; Jaeger, H.; Lindquist, S.L. Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc. Natl. Acad. Sci. USA 2003, 100, 4527–4532.
[68]  Smith, J.F.; Knowles, T.P.; Dobson, C.M.; Macphee, C.E.; Welland, M.E. Characterization of the nanoscale properties of individual amyloid fibrils. Proc. Natl. Acad. Sci. USA 2006, 103, 15806–15811.
[69]  Shorter, J. Hsp104: A weapon to combat diverse neurodegenerative disorders. Neurosignals 2008, 16, 63–74, doi:10.1159/000109760.
[70]  Roberts, B.E.; Shorter, J. Escaping amyloid fate. Nat. Struct. Mol. Biol. 2008, 15, 544–546, doi:10.1038/nsmb0608-544.
[71]  Ehrnhoefer, D.E.; Bieschke, J.; Boeddrich, A.; Herbst, M.; Masino, L.; Lurz, R.; Engemann, S.; Pastore, A.; Wanker, E.E. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat. Struct. Mol. Biol. 2008, 15, 558–566.
[72]  Ehrnhoefer, D.E.; Duennwald, M.; Markovic, P.; Wacker, J.L.; Engemann, S.; Roark, M.; Legleiter, J.; Marsh, J.L.; Thompson, L.M.; Lindquist, S.; Muchowski, P.J.; Wanker, E.E. Green tea (?)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models. Hum. Mol. Genet. 2006, 15, 2743–2751, doi:10.1093/hmg/ddl210.
[73]  Masuda, M.; Suzuki, N.; Taniguchi, S.; Oikawa, T.; Nonaka, T.; Iwatsubo, T.; Hisanaga, S.; Goedert, M.; Hasegawa, M. Small molecule inhibitors of alpha-synuclein filament assembly. Biochemistry 2006, 45, 6085–6094.
[74]  Meng, F.; Abedini, A.; Plesner, A.; Verchere, C.B.; Raleigh, D.P. The flavanol (?)-epigallocatechin 3-gallate inhibits amyloid formation by islet amyloid polypeptide, disaggregates amyloid fibrils, and protects cultured cells against IAPP-induced toxicity. Biochemistry 2010, 49, 8127–8133.
[75]  Bieschke, J.; Russ, J.; Friedrich, R.P.; Ehrnhoefer, D.E.; Wobst, H.; Neugebauer, K.; Wanker, E.E. EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proc. Natl. Acad. Sci. USA 2010, 107, 7710–7715.
[76]  Roberts, B.E.; Duennwald, M.L.; Wang, H.; Chung, C.; Lopreiato, N.P.; Sweeny, E.A.; Knight, M.N.; Shorter, J. A synergistic small-molecule combination directly eradicates diverse prion strain structures. Nat. Chem. Biol. 2009, 5, 936–946, doi:10.1038/nchembio.246.
[77]  Hauber, I.; Hohenberg, H.; Holstermann, B.; Hunstein, W.; Hauber, J. The main green tea polyphenol epigallocatechin-3-gallate counteracts semen-mediated enhancement of HIV infection. Proc. Natl. Acad. Sci. USA 2009, 106, 9033–9038.
[78]  Popovych, N.; Brender, J.R.; Soong, R.; Vivekanandan, S.; Hartman, K.; Basrur, V.; Macdonald, P.M.; Ramamoorthy, A. Site specific interaction of the polyphenol EGCG with the SEVI amyloid precursor peptide PAP(248–286). J. Phys. Chem. B 2012, 116, 3650–3658.
[79]  Zhu, Q.Y.; Zhang, A.; Tsang, D.; Huang, Y.; Chen, Z.Y. Stability of green tea catechins. J. Agric. Food Chem. 1997, 45, 4624–4628, doi:10.1021/jf9706080.
[80]  Hartjen, P.; Frerk, S.; Hauber, I.; Matzat, V.; Thomssen, A.; Holstermann, B.; Hohenberg, H.; Schulze, W.; Schulze Zur Wiesch, J.; van Lunzen, J. Assessment of the range of the HIV-1 infectivity enhancing effect of individual human semen specimen and the range of inhibition by EGCG. AIDS Res. Ther. 2012, 9, 2, doi:10.1186/1742-6405-9-2.
[81]  Kawai, K.; Tsuno, N.H.; Kitayama, J.; Okaji, Y.; Yazawa, K.; Asakage, M.; Hori, N.; Watanabe, T.; Takahashi, K.; Nagawa, H. Epigallocatechin gallate, the main component of tea polyphenol, binds to CD4 and interferes with gp120 binding. J. Allergy Clin. Immunol. 2003, 112, 951–957, doi:10.1016/S0091-6749(03)02007-4.
[82]  Nance, C.L.; Siwak, E.B.; Shearer, W.T. Preclinical development of the green tea catechin, epigallocatechin gallate, as an HIV-1 therapy. J. Allergy Clin. Immunol. 2009, 123, 459–465, doi:10.1016/j.jaci.2008.12.024.
[83]  Williamson, M.P.; McCormick, T.G.; Nance, C.L.; Shearer, W.T. Epigallocatechin gallate, the main polyphenol in green tea, binds to the T-cell receptor, CD4: Potential for HIV-1 therapy. J. Allergy Clin. Immunol. 2006, 118, 1369–1374, doi:10.1016/j.jaci.2006.08.016.
[84]  Isaacs, C.E.; Wen, G.Y.; Xu, W.; Jia, J.H.; Rohan, L.; Corbo, C.; di Maggio, V.; Jenkins, E.C., Jr.; Hillier, S. Epigallocatechin gallate inactivates clinical isolates of herpes simplex virus. Antimicrob. Agents Chemother. 2008, 52, 962–970.
[85]  Ciesek, S.; von Hahn, T.; Colpitts, C.C.; Schang, L.M.; Friesland, M.; Steinmann, J.; Manns, M.P.; Ott, M.; Wedemeyer, H.; Meuleman, P.; Pietschmann, T.; Steinmann, E. The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology 2011, 54, 1947–1955.
[86]  Goldsbury, C.S.; Cooper, G.J.; Goldie, K.N.; Muller, S.A.; Saafi, E.L.; Gruijters, W.T.; Misur, M.P.; Engel, A.; Aebi, U.; Kistler, J. Polymorphic fibrillar assembly of human amylin. J. Struct. Biol. 1997, 119, 17–27, doi:10.1006/jsbi.1997.3858.
[87]  Petkova, A.T.; Leapman, R.D.; Guo, Z.; Yau, W.M.; Mattson, M.P.; Tycko, R. Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils. Science 2005, 307, 262–265, doi:10.1126/science.1105850.
[88]  Tanaka, M.; Chien, P.; Naber, N.; Cooke, R.; Weissman, J.S. Conformational variations in an infectious protein determine prion strain differences. Nature 2004, 428, 323–328.
[89]  Wiltzius, J.J.; Landau, M.; Nelson, R.; Sawaya, M.R.; Apostol, M.I.; Goldschmidt, L.; Soriaga, A.B.; Cascio, D.; Rajashankar, K.; Eisenberg, D. Molecular mechanisms for protein-encoded inheritance. Nat. Struct. Mol. Biol. 2009, 16, 973–978.
[90]  Shorter, J. Emergence and natural selection of drug-resistant prions. Mol. Biosyst. 2010, 6, 1115–1130, doi:10.1039/c004550k.
[91]  Duennwald, M.L.; Shorter, J. Countering amyloid polymorphism and drug resistance with minimal drug cocktails. Prion 2010, 4, 244–251, doi:10.4161/pri.4.4.13597.
[92]  Wang, H.; Duennwald, M.L.; Roberts, B.E.; Rozeboom, L.M.; Zhang, Y.L.; Steele, A.D.; Krishnan, R.; Su, L.J.; Griffin, D.; Mukhopadhyay, S.; Hennessy, E.J.; Weigele, P.; Blanchard, B.J.; King, J.; Deniz, A.A.; Buchwald, S.L.; Ingram, V.M.; Lindquist, S.; Shorter, J. Direct and selective elimination of specific prions and amyloids by 4,5-dianilinophthalimide and analogs. Proc. Natl. Acad. Sci. USA 2008, 105, 7159–7164.
[93]  Weissmann, C. Mutation and selection of prions. PLoS Pathogens. 2012, 8, e1002582, doi:10.1371/journal.ppat.1002582.
[94]  de Lamirande, E. Semenogelin, the main protein of the human semen coagulum, regulates sperm function. Semin. Thromb. Hemost. 2007, 33, 60–68, doi:10.1055/s-2006-958463.
[95]  Robert, M.; Gagnon, C. Semenogelin I: A coagulum forming, multifunctional seminal vesicle protein. Cell. Mol. Life Sci. 1999, 55, 944–960, doi:10.1007/s000180050346.
[96]  Robert, M.; Gagnon, C. Purification and characterization of the active precursor of a human sperm motility inhibitor secreted by the seminal vesicles: Identity with semenogelin. Biol. Reprod. 1996, 55, 813–821, doi:10.1095/biolreprod55.4.813.
[97]  Robert, M.; Gibbs, B.F.; Jacobson, E.; Gagnon, C. Characterization of prostate-specific antigen proteolytic activity on its major physiological substrate, the sperm motility inhibitor precursor/semenogelin I. Biochemistry 1997, 36, 3811–3819.
[98]  Maji, S.K.; Perrin, M.H.; Sawaya, M.R.; Jessberger, S.; Vadodaria, K.; Rissman, R.A.; Singru, P.S.; Nilsson, K.P.; Simon, R.; Schubert, D.; Eisenberg, D.; Rivier, J.; Sawchenko, P.; Vale, W.; Riek, R. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 2009, 325, 328–332.
[99]  Berson, J.F.; Theos, A.C.; Harper, D.C.; Tenza, D.; Raposo, G.; Marks, M.S. Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis. J. Cell Biol. 2003, 161, 521–533, doi:10.1083/jcb.200302072.
[100]  Olsen, J.S.; Dimaio, J.T.M.; Doran, T.M.; Brown, C.; Nilsson, B.L.; Dewhurst, S. Seminal plasma accelerates SEVI fibril formation by the PAP[248–286] peptide. J. Biol. Chem. 2012.
[101]  Hartjen, P.; Frerk, S.; Hauber, I.; Matzat, V.; Thomssen, A.; Holstermann, B.; Hohenberg, H.; Schulze, W.; Schulze Zur Wiesch, J.; van Lunzen, J. Assessment of the range of the HIV-1 infectivity enhancing effect of individual human semen specimen and the range of inhibition by EGCG. AIDS Res. Ther. 2012, 9, 2, doi:10.1186/1742-6405-9-2.
[102]  Doncel, G.F. Exploiting common targets in human fertilization and HIV infection: Development of novel contraceptive microbicides. Hum. Reprod. Update 2006, 12, 103–117, doi:10.1093/humupd/dmi040.
[103]  Doncel, G.; Mauck, C. Vaginal microbicides: A novel approach to preventing sexual transmission of HIV. Curr. HIV/AIDS Rep. 2004, 1, 25–32, doi:10.1007/s11904-004-0004-0.
[104]  Jones, R. Interaction of zona pellucida glycoproteins, sulphated carbohydrates and synthetic polymers with proacrosin, the putative egg-binding protein from mammalian spermatozoa. Development 1991, 111, 1155–1163.
[105]  Oehninger, S.; Clark, G.F.; Acosta, A.A.; Hodgen, G.D. Nature of the inhibitory effect of complex saccharide moieties on the tight binding of human spermatozoa to the human zona pellucida. Fertil.Steril. 1991, 55, 165–169.
[106]  Cohen, F.S.; Melikyan, G.B. The Energetics of Membrane Fusion from Binding, through Hemifusion, Pore Formation, and Pore Enlargement. J. Membr. Biol. 2004, 199, 1–14, doi:10.1007/s00232-004-0669-8.
[107]  Evans, J.P.; Florman, H.M. The state of the union: The cell biology of fertilization. Nat. Cell Biol. 2002, 4, s57–s63, doi:10.1038/ncb-nm-fertilityS57.
[108]  Herbein, G.; Gras, G.; Khan, K.A.; Abbas, W. Macrophage signaling in HIV-1 infection. Retrovirology 2010, 7, 34, doi:10.1186/1742-4690-7-34.
[109]  Salicioni, A.M.; Platt, M.D.; Wertheimer, E.V.; Arcelay, E.; Allaire, A.; Sosnik, J.; Visconti, P.E. Signalling pathways involved in sperm capacitation. Soc. Reprod. Fertil. Suppl. 2007, 65, 245–259.
[110]  Liu, Z.; Foote, R.H. Bull sperm motility and membrane integrity in media varying in osmolality. J. Dairy Sci. 1998, 81, 1868–1873, doi:10.3168/jds.S0022-0302(98)75757-1.
[111]  Bjartell, A.; Malm, J.; M?ller, C.; Gunnarsson, M.; Lundwall, A.; Lilja, H. Distribution and Tissue Expression of Semenogelin I and II in Man as Demonstrated by In Situ Hybridization and Immunocytochemistry. J. Androl. 1996, 17, 17–26.
[112]  Herr, J.C.; Summers, T.A.; McGee, R.S.; Sutherland, W.M.; Sigman, M.; Evans, R.J. Characterization of a monoclonal antibody to a conserved epitope on human seminal vesicle-specific peptides: A novel probe/marker system for semen identification. Biol. Reprod. 1986, 35, 773–784, doi:10.1095/biolreprod35.3.773.
[113]  Tessier, P.M.; Lindquist, S. Prion recognition elements govern nucleation, strain specificity and species barriers. Nature 2007, 447, 556–561.
[114]  Perchiacca, J.M.; Ladiwala, A.R.; Bhattacharya, M.; Tessier, P.M. Structure-based design of conformation- and sequence-specific antibodies against amyloid beta. Proc. Natl. Acad. Sci. USA 2012, 109, 84–89.
[115]  Dewhurst, S. Transmission-blocking vaccine for HIV-1. Available online: http://projectreporter.nih.gov/project_info_description.cfm?aid=7914361&icde=0 (access on 18 May 2012).
[116]  Martellini, J.A.; Cole, A.L.; Svoboda, P.; Stuchlik, O.; Chen, L.M.; Chai, K.X.; Gangrade, B.K.; Sorensen, O.E.; Pohl, J.; Cole, A.M. HIV-1 enhancing effect of prostatic acid phosphatase peptides is reduced in human seminal plasma. PloS One 2011, 6, e16285.
[117]  Balandya, E.; Sheth, S.; Sanders, K.; Wieland-Alter, W.; Lahey, T. Semen protects CD4+ target cells from HIV infection but promotes the preferential transmission of R5 tropic HIV. J. Immunol. 2010, 185, 7596–7604, doi:10.4049/jimmunol.1002846.
[118]  Sabatte, J.; Ceballos, A.; Raiden, S.; Vermeulen, M.; Nahmod, K.; Maggini, J.; Salamone, G.; Salomon, H.; Amigorena, S.; Geffner, J. Human seminal plasma abrogates the capture and transmission of human immunodeficiency virus type 1 to CD4+ T cells mediated by DC-SIGN. J. Virol. 2007, 81, 13723–13734.
[119]  Vashist, S.; Cushman, M.; Shorter, J. Applying Hsp104 to protein-misfolding disorders. Biochem. Cell. Biol. 2010, 88, 1–13.
[120]  Lo Bianco, C.; Shorter, J.; Regulier, E.; Lashuel, H.; Iwatsubo, T.; Lindquist, S.; Aebischer, P. Hsp104 antagonizes alpha-synuclein aggregation and reduces dopaminergic degeneration in a rat model of Parkinson disease. J. Clin. Invest. 2008, 118, 3087–3097, doi:10.1172/JCI35781.
[121]  Shorter, J.; Lindquist, S. Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science 2004, 304, 1793–1797, doi:10.1126/science.1098007.
[122]  Wojtowicz, W.M.; Farzan, M.; Joyal, J.L.; Carter, K.; Babcock, G.J.; Israel, D.I.; Sodroski, J.; Mirzabekov, T. Stimulation of enveloped virus infection by beta-amyloid fibrils. J. Biol. Chem. 2002, 277, 35019–35024.
[123]  Padian, N.S.; McCoy, S.I.; Manian, S.; Wilson, D.; Schwartlander, B.; Bertozzi, S.M. Evaluation of large-scale combination HIV prevention programs: Essential issues. J. Acquir. Immune Defic. Syndr. 2011, 58, e23–e28, doi:10.1097/QAI.0b013e318227af37.
[124]  Green, E.C.; Halperin, D.T.; Nantulya, V.; Hogle, J.A. Uganda’s HIV prevention success: The role of sexual behavior change and the national response. AIDS Behav. 2006, 10, 335–346. discussion 347–350., doi:10.1007/s10461-006-9073-y.
[125]  Gregson, S.; Gonese, E.; Hallett, T.B.; Taruberekera, N.; Hargrove, J.W.; Lopman, B.; Corbett, E.L.; Dorrington, R.; Dube, S.; Dehne, K.; Mugurungi, O. HIV decline in Zimbabwe due to reductions in risky sex? Evidence from a comprehensive epidemiological review. Int. J. Epidemiol. 2010, 39, 1311–1323, doi:10.1093/ije/dyq055.
[126]  Halperin, D.T.; Mugurungi, O.; Hallett, T.B.; Muchini, B.; Campbell, B.; Magure, T.; Benedikt, C.; Gregson, S. A surprising prevention success: Why did the HIV epidemic decline in Zimbabwe? PLoS Med. 2011, 8, e1000414.
[127]  Abdool Karim, Q.; Abdool Karim, S.S.; Frohlich, J.A.; Grobler, A.C.; Baxter, C.; Mansoor, L.E.; Kharsany, A.B.; Sibeko, S.; Mlisana, K.P.; Omar, Z.; Gengiah, T.N.; Maarschalk, S.; Arulappan, N.; Mlotshwa, M.; Morris, L.; Taylor, D. Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science 2010, 329, 1168–1174.
[128]  Grant, R.M.; Lama, J.R.; Anderson, P.L.; McMahan, V.; Liu, A.Y.; Vargas, L.; Goicochea, P.; Casapia, M.; Guanira-Carranza, J.V.; Ramirez-Cardich, M.E.; Montoya-Herrera, O.; Fernandez, T.; Veloso, V.G.; Buchbinder, S.P.; Chariyalertsak, S.; Schechter, M.; Bekker, L.G.; Mayer, K.H.; Kallas, E.G.; Amico, K.R.; Mulligan, K.; Bushman, L.R.; Hance, R.J.; Ganoza, C.; Defechereux, P.; Postle, B.; Wang, F.; McConnell, J.J.; Zheng, J.H.; Lee, J.; Rooney, J.F.; Jaffe, H.S.; Martinez, A.I.; Burns, D.N.; Glidden, D.V. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N. Engl. J. Med. 2010, 363, 2587–2599.
[129]  Celum, C.; Baeten, J.M. Tenofovir-based pre-exposure prophylaxis for HIV prevention: Evolving evidence. Curr. Opin. Infect. Dis. 2012, 25, 51–57, doi:10.1097/QCO.0b013e32834ef5ef.
[130]  Das, A.T.; Berkhout, B. HIV-1 evolution: Frustrating therapies, but disclosing molecular mechanisms. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 1965–1973, doi:10.1098/rstb.2010.0072.
[131]  Iwasa, Y.; Michor, F.; Nowak, M.A. Evolutionary dynamics of escape from biomedical intervention. Proc. Biol. Sci. 2003, 270, 2573–2578, doi:10.1098/rspb.2003.2539.
[132]  Iwasa, Y.; Michor, F.; Nowak, M.A. Evolutionary dynamics of invasion and escape. J. Theor. Biol. 2004, 226, 205–214, doi:10.1016/j.jtbi.2003.08.014.
[133]  Hogg, R.; Lima, V.; Sterne, J.A.; Grabar, S.; Battegay, M.; Bonarek, M.; D’Arminio Montforte, A.; Esteve, A.; Gill, M.J.; Harris, R.; Justice, A.; Hayden, A.; Lampe, F.; Mocroft, A.; Mugavero, M.J.; Staszewski, S.; Wasmuth, J.C.; van Sighem, A.; Kitahata, M.; Guest, J.; Egger, M.; May, M. Life expectancy of individuals on combination antiretroviral therapy in high-income countries: A collaborative analysis of 14 cohort studies. Lancet 2008, 372, 293–299.
[134]  Staszewski, S.; Morales-Ramirez, J.; Tashima, K.T.; Rachlis, A.; Skiest, D.; Stanford, J.; Stryker, R.; Johnson, P.; Labriola, D.F.; Farina, D.; Manion, D.J.; Ruiz, N.M. Efavirenz plus zidovudine and lamivudine, efavirenz plus indinavir, and indinavir plus zidovudine and lamivudine in the treatment of HIV-1 infection in adults. Study 006 Team. N. Engl. J. Med. 1999, 341, 1865–1873.
[135]  Kurth, A.E.; Celum, C.; Baeten, J.M.; Vermund, S.H.; Wasserheit, J.N. Combination HIV prevention: Significance, challenges, and opportunities. Curr. HIV/AIDS Rep. 2011, 8, 62–72, doi:10.1007/s11904-010-0063-3.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133