Development of the atherosclerotic plaque involves a complex interplay between a number of cell types and an extensive inter-cellular communication via cell bound as well as soluble mediators. The family of tribbles proteins has recently been identified as novel controllers of pro-inflammatory signal transduction. The objective of this study was to address the expression pattern of all three tribbles proteins in atherosclerotic plaques from a mouse model of atherosclerosis. Each tribbles were expressed in vascular smooth muscle cells, endothelial cells as well as in resident macrophages of mouse atherosclerotic plaques. The role of IL-1 mediated inflammatory events in controlling tribbles expression was also addressed by inducing experimental atherosclerosis in ApoE ?/?IL1R1 ?/? (double knockout) mice. Immunohistochemical analysis of these mice showed a selective decrease in the percentage of trb-1 expressing macrophages, compared to the ApoE ?/? cohort (14.7% ± 1.55 vs. 26.3% ± 1.19). The biological significance of this finding was verified in vitro where overexpression of trb-1 in macrophages led to a significant attenuation (~70%) of IL-6 production as well as a suppressed IL-12 expression induced by a proinflammatory stimulus. In this in vitro setting, expression of truncated trb-1 mutants suggests that the kinase domain of this protein is sufficient to exert this inhibitory action.
References
[1]
Scandella, E.; Krebs, P.; Ludewig, B. Immunopathogenesis of atherosclerosis. J. Leukoc Biol. 2004, 76, 300–306, doi:10.1189/jlb.1203605. 15039468
[2]
Xu, Q. Biomechanical-stress-induced signaling and gene expression in the development of arteriosclerosis. Trends Cardiovasc Med. 2000, 10, 35–41, doi:10.1016/S1050-1738(00)00042-6. 11150727
[3]
Xu, Q.; Dietrich, H.; Hu, Y.; Metzler, B. Increased expression and activation of stress–activated protein kinases/c-Jun NH(2)-terminal protein kinases in atherosclerotic lesions coincide with p53. Am. J. Pathol. 2000, 156, 1875–1886, doi:10.1016/S0002-9440(10)65061-4. 10854211
[4]
Widmann, C.; James, R.W.; Waeber, G.; Zschornig, O.; Dobreva, I. Cholesterol is the major component of native lipoproteins activating the p38 mitogen–activated protein kinases. Biol. Chem. 2005, 386, 909–918, doi:10.1515/BC.2005.106. 16164416
[5]
Kiss-Toth, E.; Czibula, A.; Hegedus, Z. Tribbles: A family of kinase–like proteins with potent signalling regulatory function. Cell Signal 2007, 19, 238–250, doi:10.1016/j.cellsig.2006.06.010. 16963228
[6]
Dower, S.K.; Qwarnstrom, E.E.; O'neill, L.A.; Harte, M.; Polgar, T.; Wyllie, D.H.; Oxley, K.M.; Caunt, J.C.; Dempsey, C.; Jozsa, V.; Sung, H.Y.; Bagstaff, S.M.; Kiss–Toth, E. Human tribbles, a protein family controlling mitogen-activated protein kinase cascades. J. Biol. Chem. 2004, 279, 42703–42708, doi:10.1074/jbc.M407732200. 15299019
[7]
Montminy, M.; Kulkarni, R.N.; Herzig, S.; Du, K. TRB3: A tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 2003, 300, 1574–1577, doi:10.1126/science.1079817. 12791994
[8]
Leptin, M.; Seher, T.C. Tribbles, a cell–cycle brake that coordinates proliferation and morphogenesis during Drosophila gastrulation. Curr. Biol. 2000, 10, 623–629, doi:10.1016/S0960-9822(00)00502-9. 10837248
Montminy, M.; Olefsky, J.; Evans, R.M.; Kulkarni, R.; Hedrick, S.; Lee, C.H.; Herzig, S.; Satoh, H.; Koo, S.H. PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3. Nat. Med. 2004, 10, 530–534, doi:10.1038/nm1044. 15107844
[11]
Orho–Melander, M.; Musunuru, K.; Kathiresan, S. Defining the spectrum of alleles that contribute to blood lipid concentrations in humans. Curr. Opin. Lipidol. 2008, 19, 122–127, doi:10.1097/MOL.0b013e3282f70296. 18388691
[12]
Trischitta, V.; Morini, E.; Prudente, S. The emerging role of TRIB3 as a gene affecting human insulin resistance and related clinical outcomes. Acta Diabetol 2009, 46, 79–84, doi:10.1007/s00592-008-0087-y. 19139803
[13]
Kiss-Toth, E.; Crossman, D.C.; Francis, S.E.; Wilson, A.G.; Dower, S.K.; Suvarna, S.K.; Heath, E.; Eder, K.; King, A.R.; Czibula, A.; Guan, H.; Sung, H.Y. Human tribbles-1 controls proliferation and chemotaxis of smooth muscle cells via MAPK signaling pathways. J. Biol. Chem. 2007, 282, 18379–18387, doi:10.1074/jbc.M610792200. 17452330
[14]
Kiss-Toth, E.; Crossman, D.C.; Francis, S.E.; Dower, S.K.; Turner, M.; Duda, E.; Sarmay, G.; Janas, M.; Angyal, A.; Ward, J.; Sung, H.Y.; Guan, H.; Eder, K. Tribbles-2 is a novel regulator of inflammatory activation of monocytes. Int. Immunol. 2008, 20, 1543–1550, doi:10.1093/intimm/dxn116. 18952906
[15]
Davis, B.; Lamb, J.R.; Rahmoune, H.; Burnand, K.G.; Smith, A.; Patel, L.; James, C.H.; Deng, J. Human tribbles homologue 2 is expressed in unstable regions of carotid plaques and regulates macrophage IL-10 in vitro. Clin. Sci. (Lond) 2009, 116, 241–248, doi:10.1042/CS20080058.
[16]
Crossman, D.C.; Dower, S.; Alp, N.J.; Graham, D.; Shaw, G.; Brookes, Z.; Francis, S.; Chamberlain, J. Interleukin-1 regulates multiple atherogenic mechanisms in response to fat feeding. PLoS One 2009, 4, e5073, doi:10.1371/journal.pone.0005073. 19347044
[17]
Kiss-Toth, E.; Crossman, D.C.; Francis, S.E.; Sung, H.Y. Regulation of expression and signalling modulator function of mammalian tribbles is cell-type specific. Immunol. Lett. 2006, 104, 171–177, doi:10.1016/j.imlet.2005.11.010. 16364454
[18]
Brune, B.; Dehne, N.; Al–Furoukh, N.; Essler, S.; Igwe, E.I. Hypoxic transcription gene profiles under the modulation of nitric oxide in nuclear run on–microarray and proteomics. BMC Genomics 2009, 10, 408, doi:10.1186/1471-2164-10-408. 19725949
Amar, S.; Graves, D.T.; Levine, R.A.; Messas, E.; Chi, H. Interleukin-1 receptor signaling mediates atherosclerosis associated with bacterial exposure and/or a high-fat diet in a murine apolipoprotein E heterozygote model: pharmacotherapeutic implications. Circulation 2004, 110, 1678–1685, doi:10.1161/01.CIR.0000142085.39015.31. 15353494
[21]
Dower, S.K.; Qwarnstrom, E.E.; Polgar, T.; Oxley, K.M.; Jozsa, V.; Marsden, L.; Holland, K.; Wyllie, D.H.; Kiss-Toth, E. Functional mapping and identification of novel regulators for the Toll/Interleukin-1 signalling network by transcription expression cloning. Cell Signal 2006, 18, 202–214, doi:10.1016/j.cellsig.2005.04.012. 15990277
[22]
Muslin, A.J. MAPK signalling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clin. Sci. (Lond) 2008, 115, 203–218, doi:10.1042/CS20070430.
[23]
Laffargue, M.; Breton–Douillon, M.; Briand–Mesange, F.; Malet, N.; Gayral, S.; Fougerat, A. Phosphoinositide 3-kinases and their role in inflammation: Potential clinical targets in atherosclerosis? Clin. Sci. (Lond) 2009, 116, 791–804, doi:10.1042/CS20080549.
[24]
Silverstein, R.L.; Hazen, S.L.; Podrez, E.A.; Febbraio, M.; Lennon, D.J.; Rahaman, S.O. A CD36–dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metab. 2006, 4, 211–221, doi:10.1016/j.cmet.2006.06.007. 16950138
[25]
Luscher, T.F.; Matter, C.M.; Wagner, E.F.; Freeman, M.W.; Moore, K.J.; Cybulsky, M.I.; Chen, M.; Boren, J.; Becher, B.; Eberli, F.R.; Eriksson, U.; Hersberger, M.; Akhmedov, A.; Kurrer, M.; Rozenberg, I.; Sumara, I.; Sumara, G.; Ricci, R. Requirement of JNK2 for scavenger receptor A-mediated foam cell formation in atherogenesis. Science 2004, 306, 1558–1561, doi:10.1126/science.1101909. 15567863
[26]
Miyajima, A.; Sekine, K.; Miyaoka, Y.; Saijou, E.; Naiki, T. TRB2, a mouse tribbles ortholog, suppresses adipocyte differentiation by inhibiting AKT and C/EBPbeta. J. Biol. Chem. 2007, 282, 24075–24082, doi:10.1074/jbc.M701409200. 17576771
Orho-Melander, M.; Altshuler, D.M.; Groop, L.; Peltonen, L.; Salomaa, V.; Newton-Cheh, C.; Taskinen, M.R.; Hedblad, B.; Jousilahti, P.; Vartiainen, E.; Berglund, G.; Ordovas, J.M.; Tai, E.S.; Corella, D.; Hedner, T.; Wahlstrand, B.; Havulinna, A.S.; Voight, B.F.; Roos, C.; Cooper, G.M.; Rieder, M.J.; Burtt, N.P.; Surti, A.; Guiducci, C.; Melander, O.; Kathiresan, S. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat. Genet. 2008, 40, 189–197, doi:10.1038/ng.75. 18193044
[29]
Kiss-Toth, E.; Angyal, A. The tribbles gene family and lipoprotein metabolism. Curr. Opin. Lipidol. 2012, 23, 122–126, doi:10.1097/MOL.0b013e3283508c3b. 22274752
[30]
Herzig, S.; Akira, S.; Satoh, T.; Yamamoto, M.; Strzoda, D.; Diaz, M.B.; Vegiopoulos, A.; Reimann, A.; Kleinsorg, S.; Liebert, M.; Rose, A.J.; Jones, A.; Ostertag, A. Control of adipose tissue inflammation through TRB1. Diabetes 2010, 59, 1991–2000, doi:10.2337/db09-1537. 20522600
[31]
Zhang, W.; Deng, J.T.; Zhang, Y.; Wang, Z.H.; Guo, Z.X.; Zhang, L.P.; Zhong, M.; Shang, Y.Y. Tribble 3, a novel oxidized low–density lipoprotein–inducible gene, is induced via the activating transcription factor 4-C/EBP homologous protein pathway. Clin. Exp. Pharmacol. Physiol. 2010, 37, 51–55, doi:10.1111/j.1440-1681.2009.05229.x. 19566842
[32]
Montminy, M.; Yates, J.; Evans, R.M.; Nelson, M.; Newgard, C.; Bain, J.; Kulkarni, R.N.; Liew, C.W.; Macleod, I.X.; Niessen, S.; Goebel, N.; Screaton, R.; Altarejos, J.Y.; Heredia, J.E.; Qi, L. TRB3 links the E3 ubiquitin ligase COP1 to lipid metabolism. Science 2006, 312, 1763–1766, doi:10.1126/science.1123374. 16794074