Large tracts of lowlands have been drained to expand extensive agriculture into areas that were historically categorized as wasteland. This expansion in agriculture necessarily coincided with changes in ecosystem structure, biodiversity, and nutrient cycling. These changes have impacted not only the landscapes in which they occurred, but also larger water bodies receiving runoff from drained land. New approaches must append current efforts toward land conservation and restoration, as the continuing impacts to receiving waters is an issue of major environmental concern. One of these approaches is agricultural drainage management. This article reviews how this approach differs from traditional conservation efforts, the specific practices of drainage management and the current state of knowledge on the ecology of drainage ditches. A bottom-up approach is utilized, examining the effects of stochastic hydrology and anthropogenic disturbance on primary production and diversity of primary producers, with special regard given to how management can affect establishment of macrophytes and how macrophytes in agricultural landscapes alter their environment in ways that can serve to mitigate non-point source pollution and promote biodiversity in receiving waters.
References
[1]
Allan, J.D. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284, doi:10.1146/annurev.ecolsys.35.120202.110122.
[2]
Blann, K.L.; Anderson, J.L.; Sands, G.R.; Vondracek, B. Effects of agricultural drainage on aquatic ecosystems: A review. Crit. Revi. Environ. Sci. Technol. 2009, 39, 909–1001.
[3]
Carpenter, S.R.; Stanley, E.H.; Vander Zanden, M.J. State of the world’s freshwater ecosystems: Physical, chemical, and biological changes. Annu. Rev. Environ. Res. 2011, 36, 75–99, doi:10.1146/annurev-environ-021810-094524.
[4]
Rabalais, N.N.; Turner, R.E.; Wiseman, W.J., Jr. Hypoxia in the Gulf of Mexico. J. Environ. Qual. 2001, 30, 320–329, doi:10.2134/jeq2001.302320x.
[5]
Breitburg, D.L.; Hondorp, D.W.; Davias, L.A.; Diaz, R.J. Hypoxia, nitrogen, and fisheries: Integrating effects across local and global landscapes. Ann. Rev. Mar. Sci. 2009, 1, 329–349, doi:10.1146/annurev.marine.010908.163754.
[6]
Mander, ü.; Kuusemets, V.; Hayakawa, Y. Purification processes, ecological functions, planning and design of riparian buffer zones in agricultural watersheds (Editorial). Ecol. Eng. 2005, 24, 421–432, doi:10.1016/j.ecoleng.2005.01.015.
[7]
Strock, J.S.; Kleinman, P.J.A.; King, K.W.; Delgado, J.A. Drainage water management for water quality protection. J. Soil Water Conserv. 2010, 65, 131A–136A, doi:10.2489/jswc.65.6.131A.
[8]
Kr?ger, R.; Thornton, K.W.; Moore, M.T.; Farris, J.L.; Prevost, J.D.; Pierce, S.C. Tiered collaborative strategies for reducing hypoxia and restoring the Gulf of Mexico. J. Soil Water Conserv. 2012, 67, 70A–73A, doi:10.2489/jswc.67.3.70A.
[9]
Kr?ger, R.; Moore, M.T.; Thornton, K.W.; Farris, J.L.; Prevost, J.D.; Pierce, S.C. Tiered on-the-ground implementation projects for Gulf of Mexico water quality improvements. J. Soil Water Conserv. 2012, 67, 94A–99A.
[10]
Day J.W., Jr.; Arancibia, A.Y.; Mitsch, W.J.; Lara-Dominguez, A.L.; Day, J.N.; Ko, J.; Lane, R.; Lindsey, J; Lomeli, D.Z. Using ecotechnology to address water quality and wetland habitat loss problems in the Mississippi basin: A hierarchical approach. Biotechnol. Adv. 2003, 22, 135–159.
[11]
Evans, R.; Bass, K.; Burchell, M.; Hinson, D.; Johnson, R.; Doxey, M. Management alternatives to enhance water quality function of channelized streams and drainage canals. J. Soil Water Conserv. 2007, 62, 308–320.
[12]
Mitsch, W.J.; Day, J.W., Jr. Restoration of wetlands in the Mississippi–Ohio–Missouri (MOM) River Basin: Experience and needed research. Ecol. Eng. 2006, 26, 55–69, doi:10.1016/j.ecoleng.2005.09.005.
[13]
Ranalli, A.J.; Macalady, D.L. The importance of the riparian zone and in-stream processes in nitrate attenuation in undisturbed and agricultural watersheds—A review of the scientific literature. J. Hydrol. 2010, 389, 406–415, doi:10.1016/j.jhydrol.2010.05.045.
[14]
Brinson, M.M.; Eckles, D.S.U.S. Department of Agriculture conservation program and practice effects on wetland ecosystem services: A synthesis. Ecol. Appl. 2011, 21, 116–127.
[15]
Moore, M.T.; Kr?ger, R. Moore, M.T., Kr?ger, R., Eds.; Research Signpost: Kerala, India, 2010; p. 259.
[16]
Davies, B.D.; Biggs, J.; Williams, P.; Thompson, S. Making agricultural landscapes more sustainable for freshwater biodiversity: A case study from southern England. Aqua. Conserv. Mar. Freshwater Ecosyst. 2009, 19, 439–447, doi:10.1002/aqc.1007.
[17]
Bouldin, J.L.; Farris, J.L.; Moore, M.T.; Cooper, C.M. Vegetative and structural characteristics of agricultural drainages in the Mississippi Delta landscapes. Environ. Pollut. 2004, 132, 403–411, doi:10.1016/j.envpol.2004.05.026.
[18]
Moore, M.T.; Cooper, C.M.; Farris, J.L. Drainage ditches. In Water encyclopedia: Surface and Agricultural Water; Lehr, J., Keeley, J., Eds.; Wiley: New York, NY, USA, 2005; pp. 87–92.
[19]
Strahler, A.N. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Union 1957, 38, 913–920.
[20]
Beauchamp, K.H. A history of drainage and drainage methods. In Farm Drainage in the United States—History, Status, and Prospects; Pavelis, G.A., Ed.; Economic Research Service, U.S. Department of Agriculture: Washington, DC, USA, 1987; pp. 13–29.
[21]
van Schilfgaarde, J. Drainage yesterday, today, and tomorrow. In Proceedings of the American Society of Agricultural Engineers National Drainage Symposium; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1971.
[22]
Allen, J. Prehistoric Agricultural Systems in the Waghi Valley—A further note. Mankind 1970, 7, 177–183.
[23]
Ballard, C. Wetland drainage and agricultural transformations in the Southern Highlands of Papua New Guinea. Asia Pac. Viewpoint 2001, 42, 287–304.
[24]
Muke, J.; Mandui, H. In the shadows of Kuk: Evidence for prehistoric agriculture at Kana, Wahgi Valley, Papua New Guinea. Archaeol. Oceania 2003, 38, 177–185.
[25]
Denham, T. Archaeological evidence for mid-Holocene agriculture in the interior of Papua New Guinea: A critical review. Archaeol. Oceania 2003, 38, 159–176.
[26]
Pavelis, G.A. Farm Drainage in the United States: History, Status, and Prospects 1987; U.S. Department of Agriculture: Washington, DC, USA, 1987; p. 170.
[27]
Blomqvist, M.M.; Vos, P.; Klinkhamer, G.L.; ter Keurs, W.J. Declining plant species richness of grassland ditch banks—A problem of colonisation or extinction? Biol. Conser. 2003, 109, 391–406.
[28]
Hietala-Koivu, R.; Lankoski, J.; Tarmi, S. Loss of biodiversity and its social cost in an agricultural landscape. Agri. Ecosyst. Environ. 2004, 103, 75–83, doi:10.1016/j.agee.2003.10.015.
[29]
Helm, A.; Hanski, I.; Portel, M. Slow response of plant species richness to habitat loss and fragmentation. Ecol. Lett. 2006, 9, 72–77.
[30]
Herzon, I.; Helenius, J. Agricultural drainage ditches, their biological importance and functioning. Biol. Conser. 2008, 141, 1171–1183, doi:10.1016/j.biocon.2008.03.005.
[31]
USEPA. National Water Quality Inventory: Report to Congress, 2004 Reporting Cycle (EPA 841-R-08–001) 2009. Available online: http://water.epa.gov/lawsregs/guidance/cwa/305b/2004report_index.cfm (accessed on 31 October 2012).
[32]
USEPA National Assessment Database. Available online: http://iaspub.epa.gov/waters10/w305b_report_v2.nation (accessed on 31 October 2012).
[33]
de Wit, M.; Behrendt, H.; Bendoricchio, G.; Bleuten, W.; van Gaans, P. The Contribution of Agriculture to Nutrient Pollution in Three European Rivers, with Reference to the European Nitrates Directive; European Water Management Online; European Water Association: Hennef, Germany, 2002.
[34]
Mourad, D.S.J.; Van Der Perk, M.; Piirim?e, K. Changes in nutrient emissions, fluxes and retention in a north-eastern European lowland drainage basin. Environ. Monit. Assess. 2006, 120, 415–448.
[35]
Ongley, E.D.; Xiaolan, Z.; Tao, Y. Current status of agricultural and rural non-point source pollution assessment in China. Environ. Pollut. 2010, 158, 1159–1168.
[36]
Qu, H.J.; Kroeze, C. Nutrient export by rivers to the coastal waters of China: management strategies and future trends. Reg. Environ. Change 2012, 12, 153–167.
[37]
Khaleel, R.; Reddy, K.R.; Overcash, M.R. Transport of potential pollutants in runoff water from land areas receiving animal wastes: a review. Water Res. 1980, 14, 421–436.
[38]
Smukler, S.M.; O'Geen, A.T.; Jackson, L.E. Assessment of best management practices for nutrient cycling: a case study on an organic farm in Mediterranean-type climate. J. Soil Water Conserv. 2012, 67, 16–31.
[39]
Kideys, A.E. Fall and rise of the Black Sea ecosystem. Science 2002, 297, 1482–1484.
[40]
Hefner, J.M.; Brown, J.D. Wetland trends in the southeastern United States. Wetlands 1985, 4, 1–11.
[41]
Dahl, T.E. Wetland losses in the United States, 1780’s to 1980’s; U.S. Fish and Wildlife Service: Washington, DC, USA, 1990.
[42]
Foote, A.L.; Pandey, S.; Krogman, N.T. Processes of wetland loss in India. Environ. Conserv. 1996, 1, 45–54.
[43]
Davis, J.A.; Froend, R. Loss and degradation of wetlands in southwestern Australia: underlying causes, consequences and solutions. Wetl. Ecol. Manag. 1999, 7, 13–23.
[44]
Coleman, J.M.; Huh, O.K.; Braud, D., Jr. Wetland loss in world deltas. J. Coastal Res. 2008, 24, 1–14.
[45]
Zhang, J.; Ma, K.; Fu, B. Wetland loss under the impact of agricultural development in the Sanjiang Plain, NE China. Environ. Monit. Assess. 2010, 166, 139–148.
[46]
Rudis, V.A. Regional forest fragmentation effects on bottomland hardwood community types and resource values. Landscape Ecol. 1995, 10, 291–307.
[47]
Twedt, D.J.; Loesch, C.R. Forest area and the distribution in the Mississippi Alluvial Valley: Implications for breeding bird conservation. J. Biogeogr. 1999, 26, 1215–1224.
[48]
MacDonald, P.O.; Frayer, W.E.; Clauser, J.K. Documentation, chronology, and future projections of bottomland hardwood habitat loss in the Lower Mississippi Alluvial Plain, Volume 1. In Technical Report for U.S. Department of the Interior; Fish and Wildlife Service: Washington, DC, USA, 1979.
[49]
Brown, R.G. Effects of wetland channelization on runoff and loading. Wetlands 1998, 8, 123–133.
[50]
Hey, D.L.; Philippi, N.S. Flood reduction through wetland restoration: the Upper Mississippi River Basin as a case history. Restor. Ecol. 1995, 3, 4–17.
[51]
Shankman, D.; Pugh, T.B. Discharge response to channelization of a coastal plain stream. Wetlands 1992, 12, 157–162, doi:10.1007/BF03160604.
Steiger, J.; Tabacchi, E.; Dufour, S.; Corenblit, D.; Peiry, J.L. Hydrogeomorphic processes affecting riparian habitat within alluvial channel-floodplain river systems: a review for the temperate zone. River Res. Appl. 2005, 21, 719–737, doi:10.1002/rra.879.
[54]
Sophocleous, M. Interactions between groundwater and surface water: the state of the science. Hydrogeol. J. 2002, 10, 52–67, doi:10.1007/s10040-001-0170-8.
[55]
Skaggs, R.W.; Chescheir, G.M.; Phillips, B.D. Methods to determine lateral effect of a drainage ditch on wetland hydrology. Trans. ASAE 2005, 48, 577–584.
[56]
Hill, A.R. The environmental impacts of agricultural land drainage. J. Environ. Manage. 1976, 4, 251–274.
[57]
Schlosser, I.J.; Karr, J.R. Riparian vegetation and channel morphology impact on spatial patterns of water quality in agricultural watersheds. Environ. Manage. 1981, 5, 233–243.
[58]
Peterjohn, W.T.; Correll, D.L. Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. Ecology 1984, 65, 1466–1475.
[59]
Skaggs, R.W.; Breve, M.A.; Gilliam, J.W. Hydrologic and water quality impacts of agricultural drainage. Critical Rev. Environ. Sci. Technol. 1994, 24, 1–32.
[60]
Thomas, D.L.; Perry, C.D.; Evans, R.O.; Izuno, F.T.; Stone, K.C.; Gilliam, J.W. Agricultural drainage effects on water quality in Southeastern U.S. J. Irrig. Drain. E.-ASCE 1995, 121, 277–282.
[61]
Mainstone, C.P.; Schofield, K. Agricultural management for nonpoint pollution control, with particular reference to the UK. Eur. Water Pollut. Contr. 1996, 6, 21–30.
[62]
Magner, J.; Steffen, L. Stream morphological response to climate and land-use in the Minnesota River Basin. In Proceedings of the American Society of Civil. Engineers Joint Water Resources Engineering, Planning and Management Conference, Minneapolis, MI, USA, 30 July –2 August 2000; ASCE.
[63]
Shields, F.D.; Knight, S.S.; Cooper, C.M. Effects of channel incision on base flow stream habitats and fishes. Environ. Manage. 1994, 18, 43–57.
[64]
Shields, F.D., Jr.; Knight, S.S.; Cooper, C.M. Rehabilitation of aquatic habitats in warmwater streams damaged by channel incision in Mississippi. Hydrobiologia. 1998, 382, 63–86.
[65]
Hrody, P.J.; Sutton, T.M. Fish community responses to half-log additions in warmwater streams. N. Am. J. Fish. Manage. 2008, 28, 70–80.
[66]
Smiley, P.C., Jr.; Gillespie, R.B. Influence of physical habitat and agricultural contaminants on fishes within agricultural drainage ditches. Moore, M.T., Kr?ger, R., Eds.; Research Signpost: Kerala, India, 2010; pp. 37–73.
[67]
McRae, S.E.; Allan, J.D.; Burch, J.D. Reach- and catchment-scale determinants of the distribution of freshwater mussels (Bivalvia: Unionidae) in south-eastern Michigan, USA. Freshwater Biol. 2004, 49, 127–142.
[68]
Pool, K.E.; Downing, J.A. Relationship of declining mussel biodiversity to stream-reach and watershed characteristics in an agricultural landscape. J. N. Am. Benthol. Soc. 2004, 23, 114–125.
[69]
Downing, J.A.; Van Meter, P.; Woolnough, D.A. Suspects and evidence: A review of the causes of extirpation and decline in freshwater mussels. Anim. Biodivers. Conserv. 2010, 33, 151–185.
[70]
Robinson, M.; Rycroft, D.W. Chapter 23: The impact of drainage on streamflow. In Agricultural Drainage; Skaggs, R.W., van Schilfgaarde, J., Eds.; American Society of Agronomy Madison: Madison, WI, USA, 1999; pp. 767–800.
[71]
Knox, J.C. Agricultural influence on landscape sensitivity in the Upper Mississippi River Valley. Catena 2001, 42, 193–224.
[72]
Knox, J.C. Floodplain sedimentation in the Upper Mississippi Valley: Natural versus human accelerated. Geomorphology 2006, 79, 286–310.
Zaimes, G.N.; Schultz, R.C.; Isenhart, T.M. Stream bank erosion adjacent to riparian forest buffers, row-crop fields, and continuously-grazed pastures along Bear Creek in central Iowa. J. Soil Water Conserv. 2004, 59, 19–27.
[75]
Magner, J.A.; Payne, G.A.; Steffen, L.J. Drainage effects on stream nitrate-N and hydrology in south-central Minnesota (USA). Environ. Monit. Assess. 2004, 91, 183–198.
[76]
King, K.W.; Smiley, P.C., Jr.; Fausey, N.R. Hydrology of channelized and natural headwater streams. Hydrol. Sci. J. 2009, 54, 929–948.
[77]
Simon, A. The discharge of sediment in channelized alluvial streams. J. Am. Water Resour. A 1989, 25, 1177–1188.
[78]
Bengtson, R.L.; Carter, C.E.; Morris, H.F.; Bartkiewicz, S.A. Nitrogen and phosphorus losses under subsurface drainage practices in southern Louisiana. Proc. ASAE 1988, 31, 729–733.
[79]
Woltemade, C.J. Ability of restored wetlands to restore nitrogen and phosphorous concentrations in agricultural drainage water. J. Soil Water Conserv. 2000, 3, 303–309.
[80]
Sims, J.T.; Simard, R.R.; Joern, B.C. Phosphorus losses in agricultural drainage: historical perspective and current research. J. Environ. Qual. 1998, 27, 277–293.
[81]
Gentry, L.E.; David, M.B.; Royer, T.V.; Mitchell, C.A.; Starks, K.M. Phosphorus transport pathways to streams in tile-drained agricultural watersheds. J. Environ. Qual. 2007, 36, 408–415.
[82]
The Ohio State University Extension. Agricultural drainage: Water quality impacts and subsurface drainage studies in the Midwest. In Ohio State University Extension Bulletin 871; Zucker, L.A., Brown, L.C., Eds.; The Ohio State University Extension: Columbus, Ohio, USA, 1988.
[83]
Sugg, Z. Assessing U.S. Farm Drainage: Can GIS Lead to Better Estimates of Subsurface Drainage Extent?; World Resources Institute: Washington, DC, USA, 2007.
[84]
Vought, L.B.-M.; Lacoursière, J.O. Restoration of streams in the agricultural landscape. In Restoration of Lakes, Streams, Floodplains, and Bogs in Europe; Principles and Case Studies; Eiseltová, M., Ed.; Springer: Prague, Czech Republic, 2010; pp. 225–242.
[85]
Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; D?ll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. Discuss. 2010, 7, 1863–1880.
[86]
Wen, F.; Chen, X. Evaluation of the impact of groundwater irrigation on streamflow in Nebraska. J. Hydrol. 2006, 327, 603–617.
[87]
Rugel, K.; Jackson, C.R.; Romeis, J.J.; Golladay, S.W.; Hicks, D.W.; Dowd, J.F. Effects of irrigation withdrawals on streamflows in a karst environment: lower Flint River Basin, Georgia, USA. Hydrol. Process. 2012, 26, 523–534.
[88]
Horton, J.L.; Kolb, T.E.; Hart, S.C. Physiological response to groundwater depth varies among species and with river flow regulation. Eco. Appl. 2001, 11, 1046–1059.
[89]
Vitousek, P.M.; Moonery, H.A.; Lubchencho, J.; Melillo, J.M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499.
[90]
Caraco, N.F.; Cole, J.J. Human impact on nitrate export: an analysis using major world rivers. AMBIO. 1999, 28, 167–170.
[91]
Birgand, F.; Skaggs, R.W.; Chescher, G.M.; Gilliam, J.W. Nitrogen removal in streams in agricultural catchments—A literature review. Critical Reviews in Environ. Sci. Technol. 2007, 37, 381–487.
[92]
Turner, R.E.; Rabalais, N.N. Changes in Mississippi River water quality this century. BioScience 1991, 41, 140–147.
[93]
Shields, F.D., Jr.; Lizotte, R.E., Jr.; Knight, S.S.; Cooper, C.M.; Wilcox, D. The stream channel incision syndrome and water quality. Eco. Eng. 2010, 36, 78–90.
[94]
Howarth, R.W.; Jensen, H.S.; Marino, R.; Postma, H. Transport to and processing of P in near-shore and oceanic waters. In Phosphorus in the Global Environment: Transfers, Cycles, and Management; Tiessen, H., Ed.; John Wiley and Sons: New York, NY, USA, 1995; pp. 323–345.
[95]
Schilling, K.E.; Li, Z.; Zhang, Y. Groundwater-surface water interaction in the riparian zone of an incised channel, Walnut Creek, Iowa. J. Hydrol. 2006, 327, 140–150.
[96]
Camargo, J.A.; Alonso, A.; Salamanca, A. Nitrate toxicity to aquatic animals: A review with new data for freshwater invertebrates. Chemosphere 2005, 58, 1255–1267.
[97]
Haywood, G.P. Ammonia toxicity in teleost fish: A review. Technical Report for Department of Fisheries Research Branch: Nanaimo, Columbia, 1983.
[98]
Arthur, J.W.; West, C.W.; Allen, K.N.; Hedtke, S.F. Seasonal toxicity of ammonia to five fish and nine invertebrate species. B. Environ. Contam. Tox. 1987, 38, 324–331.
[99]
Jofre, M.B.; Karasov, W.H. Direct effect of ammonia on three species of North American anuran amphibians. Environ. Toxicol. Chem. 1999, 18, 1806–1812.
[100]
Ortiz, M.E.; Marco, A.; Saiz, N.; Lizana, M. Impact of ammonium nitrate on growth and survival of six European amphibians. Arch. of Environ. Contam. and Toxicol. 2004, 47, 234–239.
[101]
Smith, G.R.; Temple, K.G.; Vaala, D.A.; Dingfelder, H.A. Effects of nitrate on the tadpoles of two ranids (Rana. catesbeiana and R. clamitans). Arch. Env. Contam. Toxicol. 2005, 49, 559–562.
[102]
Britto, D.T.; Kronzucker, H.J. NH4+ toxicity in higher plants: A critical review. J. Plant. Physiol. 2002, 159, 567–584, doi:10.1078/0176-1617-0774.
[103]
USEPA Draft 2009 update. Aquatic Life ambient water quality criteria for ammonia—freshwater. EPA-82-D-09–001 2009, Available online: http://water.epa.gov/scitech/swguidance/standards/criteria/aqlife/ammonia/upload/2009_12_23_criteria_ammonia_2009update.pdf (accessed on 6 December 2012).
[104]
Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Eco. Appl. 1998, 8, 559–568, doi:10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2.
[105]
Bennett, E.M.; Carpenter, S.R.; Caraco, N.F. Human impact on erodible phosphorus and eutrophication: A global perspective. BioScience 2001, 51, 227–234, doi:10.1641/0006-3568(2001)051[0227:HIOEPA]2.0.CO;2.
[106]
Evans-White, M.A.; Dodds, W.K.; Huggins, D.G.; Baker, D.S. Thresholds in macroinvertebrate biodiversity and stoichiometry across water-quality gradients in Central Plains (USA) streams. J. N. Am. Benthol. Soc. 2009, 28, 855–868.
[107]
Jeppesen, E.; S?ndergaard, M.; Jensen, J.P.; Havens, K.E.; Anneville, O.; Carvalho, L.; Coveney, M.F.; Deneke, R.; Dokulil, M.T.; Foy, B.; et al. Lake responses to reduced nutrient loading—An analysis of contemporary long-term data from 35 case studies. Freshwater Biol. 2005, 50, 1747, doi:10.1111/j.1365-2427.2005.01415.x.
[108]
Thomaz, S.M.; Dibble, E.D.; Evangelista, L.R.; Higuti, J.; Bini, L.M. Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshwater Biol. 2008, 53, 358–367.
[109]
Portielje, R.; Roijackers, R.M.M. Primary succession of aquatic macrophytes in experimental ditches in relation to nutrient input. Aquat. Bot. 1995, 50, 127–140.
[110]
Newman, S.; Grace, J.B.; Koebel, J.W. Effects of nutrients and hydroperiod on Typha., Cladium. and Eleocharis.: Implications for Everglades restoration. Eco. Appl. 1996, 6, 774–783.
[111]
Lorenzen, B.; Brix, H.; Mendelssohn, I.A.; McKee, K.L.; Miao, S.L. Growth, biomass allocation and nutrient use efficiency in Cladium. jamaicense and Typha. domingensis as affected by phosphorus and oxygen availability. Aquat. Bot. 2001, 70, 117–133, doi:10.1016/S0304-3770(01)00155-3.
[112]
Diaz, R.J. Overview of hypoxia around the world. J. Environ. Qual. 2001, 30, 275–281, doi:10.2134/jeq2001.302275x.
[113]
Diaz, R.J.; Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 2008, 321, 926–929.
[114]
Nixon, S.W.; Oviatt, C.A.; Frithsen, J.; Sullivan, B. Nutrients and the productivity of estuarine and coastal marine ecosystems. J. Limnol. Soc. S. Afr. 1986, 12, 43–71.
[115]
Micheli, F. Eutrophication, fisheries, and consumer-resource dynamics in marine pelagic ecosystems. Science 1999, 285, 1396–1398, doi:10.1126/science.285.5432.1396.
[116]
Baird, D.; Christian, R.R.; Peterson, C.H.; Johnson, G.A. Consequences of hypoxia on estuarine ecosystem function: energy diversion from consumers to microbes. Eco. Appl. 2004, 14, 805–822, doi:10.1890/02-5094.
Rabalais, N.N. Nitrogen in aquatic ecosystems. AMBIO 2002, 31, 102–112.
[119]
Seitzinger, S.P.; Kroeze, C.; Bouwman, A.F.; Caraco, N.; Dentener, F.; Styles, R.V. Global patterns of dissolved inorganic and particulate nitrogen inputs to coastal system: Recent conditions and future projections. Estuaries Coasts 2002, 25, 640–655.
[120]
Bagge, O.; Nielsen, E.; Mellergaard, S.; Dalsgaard, I. Hypoxia and the demersal fish stock in the Kattegat (IIIa) and Subdivision 22. In Proceedings of ICES Council Meeting 1990, ICES, Copenhagen, Denmark, 19–21 March 1990; p. 52.
[121]
Mee, L.D. The Black Sea in crisis: A need for concerted international action. AMBIO 1992, 21, 278–286.
[122]
?sterblom, H.; Hansson, S.; Larsson, U.; Hjerne, O.; Wulff, F.; Elmgren, R.; Folke, C. Human-induced trophic cascades and ecological regime shifts in the Baltic Sea. Ecosystems 2007, 10, 877–889, doi:10.1007/s10021-007-9069-0.
[123]
Chesney, E.J.; Baltz, D.M. The effects of hypoxia on the northern Gulf of Mexico coastal ecosystem: A fisheries perspective. In Coastal Hypoxia: Consequences for Living Resources and Ecosystems; Rabalais, N.N., Turner, R.E., Eds.; American Geophysical Union: Washington, DC, USA, 2001; pp. 321–354.
[124]
Craig, J.K.; Crowder, L.B. Hypoxia-induced habitat shifts and energetic consequences in Atlantic croaker and brown shrimp on the Gulf of Mexico shelf. Mar. Ecol. Prog. Ser. 2005, 294, 79–94.
[125]
O’Connor, T.; Whitall, D. Linking hypoxia to shrimp catch in the northern Gulf of Mexico. Mar. Pollut. Bull. 2007, 54, 460–463, doi:10.1016/j.marpolbul.2007.01.017.
[126]
Mississippi River/Gulf of Mexico Watershed Nutrient Task Force. In Action Plan for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico; United States of America Environmental Protection Agency: Washington, DC, USA, 2001.
[127]
USEPA. Gulf Hypoxia Action Plan 2008 for reducing, mitigating and controlling hypoxia in the Northern Gulf of Mexico and improving water quality in the Mississippi River Basin. Mississippi River Gulf of Mexico Watershed Nutrient Task Force. Available online: http://water.epa.gov/type/watersheds/named/msbasin/upload/2008_8_28_msbasin_ghap2008_update082608.pdf (accessed on 31 October 2012).
[128]
GOMA (Gulf of Mexico Alliance). Governors’ Action Plan II: For Healthy and Resilient Coasts. Gulf of Mexico Alliance, 2009. Available online: http://gulfofmexicoaliance.org/pdfs/ap2_final2.pdf (accessed on 31 October 2012).
[129]
Mitsch, W.J.; Gosselink, J.G. Wetlands, 3rd ed.; John Wiley and Sons: New York, NY, USA, 2000; p. 920.
[130]
Reddy, K.R.; DeLaune, R.D. Biogeochemistry of Wetlands; CRC Press: Boca Raton, FL, USA, 2008; p. 816.
[131]
Kadlec, R.H.; Wallace, S.D. Treatment Wetlands, 2nd ed.; Taylor and Frances Group: Boca Raton, FL, USA, 2009; p. 1016.
[132]
Hilderbrand, R.H.; Watts, A.C.; Randle, A.M. The myths of restoration ecology. Eco. Soc. 2005, 10, 19.
[133]
Moreno-Mateos, D.; Power, M.E.; Com?n, F.A.; Yockteng, R. Structural and functional loss in restored wetland ecosystems. PLOS Biol. 2012, 10, 1–8.
[134]
Faulkner, S.; Barrow, W., Jr.; Keeland, B.; Walls, S.; Telesco, D. Effects of conservation practices on wetland ecosystem services in the Mississippi Alluvial Valley. Eco. Appl. 2011, 21, 31–48, doi:10.1890/10-0592.1.
[135]
Maltby, E.; Acreman, M.C. Ecosystem services of wetlands: Pathfinder for a new paradigm. Hydrol. Sci. J. 2011, 56, 1341–1359, doi:10.1080/02626667.2011.631014.
[136]
Breukelaar, A.W.; Lammens, E.H.R.R.; Klein Breteler, J.G.P.; Tatrai, I. Effects of benthivorous bream (Abramis. brama) and carp (Cyprinus. carpio) on sediment resuspension and concentrations of nutrients and chlorophyll a. Freshwater Biol. 1994, 32, 113–121.
[137]
Post, D.M.; Taylor, J.P.; Kitchell, J.F.; Olsen, M.H.; Schindler, D.E.; Herwig, B.R. The role of migratory waterfowl as nutrient vectors in a managed wetland. Conserv. Biol. 1998, 4, 910–920.
[138]
Kitchell, J.F.; Schindler, D.R.; Herwig, B.R.; Post, D.M.; Olson, M.H. Nutrient cycling at the landscape scale: The role of diel foraging migrations by geese at the Bosque del Apache National Wildlife Refuge, New Mexico. Limnol. Oceanogr. 1999, 44, 828–836, doi:10.4319/lo.1999.44.3_part_2.0828.
[139]
Tomer, M.D.; Locke, M.A. The challenge of documenting water quality benefits of conservation practices: A review of USDA-ARS’s conservation effects assessment project watershed studies. Water Sci. Technol. 2011, 64, 300–310, doi:10.2166/wst.2011.555.
[140]
Liira, J.; Schmidt, T.; Aavik, T.; Arens, P.; Augenstein, I.; Bailey, D.; Billeter, R.; Bukacek, R.; Burel, F.; De Blust, G.; et al. Plant functional group composition and large-scale species richness in European agricultural landscapes. J. Veg. Sci. 2008, 19, 3–14, doi:10.3170/2007-8-18308.
[141]
Manhoudt, A.G.E.; Visser, A.J.; de Snoo, G.R. Management regimes and farming practices enhancing plant species richness on ditch banks. Agri. Ecosyst. Environ. 2007, 119, 353–358, doi:10.1016/j.agee.2006.08.004.
[142]
de Snoo, G.R.; van der Poll, R.J. Effect of herbicide drift on adjacent boundary vegetation. Agri. Ecosyst. Environ. 1999, 73, 1–6.
[143]
TerHaar, M.J.; Herricks, E.E. Management and development of aquatic habitat in agricultural drainage systems, Technical Report for Water Resources Center. University of Illinois: Urbana, IL, USA, 1989; Volume 145.
[144]
Smiley, P.C., Jr.; King, K.W.; Fausey, N.R. Influence of herbaceous riparian buffers on physical habitat, water chemistry, and stream communities within channelized agricultural headwater streams. Eco. Eng. 2011, 37, 1314–1323.
[145]
Tomer, M.D.; Dosskey, M.G.; Burkart, M.R.; James, D.E.; Helmers, M.J.; Eisenhauer, D.E. Methods to prioritize placement of riparian buffers for improved water quality. Agroforesty. Systems 2009, 75, 17–25, doi:10.1007/s10457-008-9134-5.
[146]
Schultz, R.C.; Isenhart, T.M.; Simpkins, W.W.; Colletti, J.P. Riparian forest buffers in agroecosystems—lessons learned from the Bear Creek Watershed, central Iowa, USA. Agroforest. Syst. 2004, 61, 35–50, doi:10.1023/B:AGFO.0000028988.67721.4d.
[147]
Bentrup, G. Conservation Buffers: Design Guidelines for Buffers, Corridors, and Greenways. Gen. Tech. Rep. SRS-109; U.S. Forest Service: Ashville, NC, USA, 2008; p. 110.
[148]
Haycock, N.E.; Muscutt, A.D. Landscape management strategies for the control of diffuse pollution. Landscape Urban. Plan. 1995, 31, 313–321, doi:10.1016/0169-2046(94)01056-E.
[149]
Lyons, J.; Trimble, S.W.; Pain, L.K. Grass versus trees: managing riparian areas to benefit streams of central North America. J. Am. Water Resour. A 2000, 36, 919–930.
[150]
Parkyn, S. Review of Riparian Buffer Zone Effectiveness. Technical Paper for Ministry of Agriculture and Forestry, Wellington, NZ, USA, 2004. No. 2004/05.
[151]
Pankau, R.C.; Schoonover, J.E.; Williard, K.W.J.; Edwards, P.J. Concentrated flow paths in riparian buffer zones of southern Illinois. Agroforestry. Systems 2012, 84, 191–205, doi:10.1007/s10457-011-9457-5.
[152]
Vought, L.B.-M.; Pinay, G.; Fuglsang, A.; Ruffioni, C. Structure and function of buffer strips from a water quality perspective in agricultural landscapes. Landscape Urban Plann. 1995, 31, 323–331, doi:10.1016/0169-2046(94)01057-F.
[153]
Blackwell, M.S.A.; Hogan, D.V.; Pinay, G.; Maltby, E. The role of buffer zones for agricultural runoff. In The Wetlands Handbook; Maltby, E., Barker, T., Eds.; Wiley-Blackwell: Chichester, UK, 2009; pp. 417–439.
[154]
Parkyn, S.M.; Davies-Colley, R.J.; Cooper, A.B.; Stroud, M.J. Predictions of stream nutrient and sediment yield changes following restoration of forested riparian buffers. Eco. Eng. 2005, 24, 551–558, doi:10.1016/j.ecoleng.2005.01.004.
[155]
Sarriquet, P.E.; Delettre, Y.R.; Marmonier, P. Effects of catchment disturbance on stream invertebrates: Comparison of different habitats (vegetation, benthic, and interstitial) using bio-ecological groups. Ann. Limnol.-Int. J. Limn. 2006, 42, 205–219.
[156]
Haycock, N.E.; Pinay, G. Groundwater nitrate dynamics in grass and poplar vegetated riparian buffers during the winter. J. Environ. Qual. 1993, 22, 273–278, doi:10.2134/jeq1993.00472425002200020007x.
[157]
Hefting, M.M.; Clement, J.C.; Bienkowski, P.; Dowrick, D.; Guenat, C.; Butturini, A.; Topa, S.T.; Pinay, G.; Verhoeven, J.T.A. The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe. Eco. Eng. 2005, 24, 465–482, doi:10.1016/j.ecoleng.2005.01.003.
[158]
Sweeney, B.W.; Bott, T.L.; Jackson, J.K.; Kaplan, L.A.; Newbold, J.D.; Standley, L.J.; Hession, W.C.; Horwitz, R.J. Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proc. Nat. Acad. Sci. USA 2004, 101, 14132–14137.
[159]
Clément, J.C.; Pinay, G.; Marmonier, P. Seasonal Dynamics of Denitrification along Topohydrosequences in Three Different Riparian Wetlands. J. Environ. Qual. 2002, 31, 1025–1037, doi:10.2134/jeq2002.1025.
[160]
Kuusemets, V.; Mander, U.; Lohmus, K.; Ivask, M. Nitrogen and phosphorus variation in shallow groundwater and assimilation in plants in complex riparian buffer zones. Water Sci. Technol. 2001, 44, 615–622.
[161]
Bunn, S.E.; Davies, P.M.; Kellaway, D.M.; Prosser, I.P. Influence of invasive macrophytes on channel morphology and hydrology in an open tropical lowland stream, and potential control by riparian shading. Freshwater Biol. 1998, 39, 171–178, doi:10.1046/j.1365-2427.1998.00264.x.
[162]
Paine, L.K.; Ribic, C.A. Comparison of riparian plant communities under four land management systems in southwestern Wisconsin. Agri. Ecosyst. Environ. 2002, 92, 93–105, doi:10.1016/S0167-8809(01)00269-9.
[163]
Parkyn, S.M.; Davies-Colley, R.J.; Halliday, N.J.; Costley, K.J.; Croker, G.F. Planted Riparian Buffer Zones in New Zealand: Do They Live Up to Expectations? Restor. Ecol. 2003, 11, 436–447.
[164]
Dodds, W.K.; Whiles, M.R. Freshwater Ecology: Concepts & Environmental Applications of Limnology, 2nd ed.; Academic Press: Burlington, MA, USA, 2010; p. 811.
[165]
Shankman, D. Stream channelization and changing vegetation patterns in the U.S. Coastal Plain. Geogr. Rev. 1996, 86, 216–232, doi:10.2307/215957.
[166]
Smiley, P.C., Jr.; Shields, D.F., Jr.; Knight, S.S. Designing impact assessments for evaluating ecological effects of agricultural conservation practices on streams. J. Am. Water Resour. A. 2009, 45, 867–878, doi:10.1111/j.1752-1688.2009.00330.x.
[167]
Zedler, J.B. Wetlands at your service: Reducing impacts of agriculture at the watershed scale. Front. Ecol. Environ. 2003, 1, 65–72, doi:10.1890/1540-9295(2003)001[0065:WAYSRI]2.0.CO;2.
Alexander, R.B.; Smith, R.A.; Schwarz, G.E. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature 2000, 403, 758–761.
[170]
Esselman, P.C.; Infante, D.M.; Wang, L.; Wu, D.; Cooper, A.R; Taylor, W.W. An index of cumulative disturbance to river fish habitats of the conterminous United States from landscape anthropogenic activities. Eco. Res. 2011, 29, 133–151, doi:10.3368/er.29.1-2.133.
[171]
Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The river continuum concept. Can. J. Fish Aquat. Sci. 1980, 37, 130–137, doi:10.1139/f80-017.
[172]
Arango, C.P.; Tank, J.L. Land use influences the spatiotemporal controls on nitrification and denitrification in headwater streams. J. N. Am. Benthol. Soc. 2008, 27, 90–107, doi:10.1899/07-024.1.
[173]
Benke, A.C.; Henry III, R.L.; Gillespie, D.M.; Hunter, R.J. Importance of snag habitat for animal production in southeastern streams. Fisheries 1985, 10, 8–13.
[174]
Julian, J.P.; Seegert, S.Z.; Powers, S.M.; Stanley, E.H.; Doyle, M.W. Light as a first-order control on ecosystem structure in a temperate stream. Ecohydrology. 2011, 4, 422–432, doi:10.1002/eco.144.
[175]
Wilcock, R.J.; Scarsbrook, M.R.; Costley, K.J.; Nagels, J.W. Controlled release experiments to determine the effects of shade and plants on nutrient retention in a lowland stream. Hydrobiologia. 2002, 485, 153–162.
[176]
Wilcock, R.J.; Scarsbrook, M.R.; Cooke, J.G.; Costley, K.J.; Nagels, J.W. Shade and flow effects on ammonia retention in macrophyte-rich streams: Implications for water quality. Environ. Pollut. 2004, 132, 95–100.
[177]
Collier, K.J.; Cooper, A.B.; Davies-Colley, R.J.; Rutherford, J.C.; Smith, C.M.; Williamson, R.B. Managing Riparian Zones: A Contribution to Protecting New Zealand’s Rivers and Streams, Volume 2: Guidelines; New Zealand Department of Conservation: Wellington, New Zealand, 1995; p. 20.
[178]
Boutin, C.; Jobin, J.; Bélanger, L. Importance of riparian habitats to flora conservation in farming landscape of southern Québec, Canada. Agri. Ecosyst. Environ. 2003, 94, 73–87.
[179]
Ryan, R.L.; Erickson, D.L.; De Young, R. Farmers' Motivations for Adopting Conservation Practices along Riparian Zones in a Mid-western Agricultural Watershed. J. Environ. Plann. Manage. 2003, 46, 19–37, doi:10.1080/713676702.
[180]
Soomers, H.; Winkel, D.N.; Wassen, Y.; Wassen, M.J. The dispersal and deposition of hydrochorous plant seeds in drainage ditches. Freshwater Biol. 2010, 55, 2032–2046, doi:10.1111/j.1365-2427.2010.02460.x.
[181]
Simon, T.N.; Travis, J. The contribution of man-made ditches to the regional stream biodiversity of the new river watershed in the Florida panhandle. Hydrobiologia. 2011, 661, 163–177, doi:10.1007/s10750-010-0521-3.
[182]
Shields, F.D. Jr.; Cooper, C.M. Riparian wetlands and flood stages. In Hydraulic Engineering; Cotroneo, G.V., Rumer, R.R., Eds.; American Society of Civil Engineers Publications: Reston, VA, USA, 1994; Volume 2, pp. 351–355.
[183]
Williams, D.D.; Hynes, H.B.N. The ecology of temporary streams II: General remarks on temporary streams. Int. Rev. Ges. Hydrobio. 1977, 62, 53–61, doi:10.1002/iroh.1977.3510620104.
[184]
Wilde, S.A.; Steinbrenner, E.C.; Pierce, R.S.; Dosen, R.C.; Pronin, D.T. Influence of forest cover on the state of the ground water table. Soil Sci. Soc. Am. J. 1953, 17, 65–67, doi:10.2136/sssaj1953.03615995001700010017x.
[185]
Borg, H.; Stoneman, G.L.; Ward, C.G. The effect of logging and regeneration on groundwater, streamflow and stream salinity in the southern forest of Western Australia. J. Hydrol. 1987, 99, 253–270.
[186]
Mulholland, P.J.; Helton, A.M.; Poole, G.C.; Hall, R.O., Jr.; Hamilton, S.K.; Peterson, B.J.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, C.N.; et al. Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 2008, 452, 202–205.
[187]
Royer, T.V.; Tank, J.L.; David, M.D. Transport and fate of nitrate in headwater agricultural streams in Illinois. J. Environ. Qual. 2004, 33, 1296–1304, doi:10.2134/jeq2004.1296.
[188]
Burt, T.; Pinay, G.; Sabater, S. Ecohydrology Bearings—Invited Commentary. What do we still need to know about the ecohydrology of riparian zones? Ecohydrology. 2010, 3, 373–377.
[189]
Samani, J.M.V.; Kouwen, N. Stability and erosion in grassed channels. J. Hydraul. Eng.-ASCE 2002, 128, 40–45.
[190]
Shields, D.F., Jr.; Smiley, P.C. Jr.; Cooper, C.M.; Borselli, L. Modifying erosion control structures for ecological benefits. J. Soil Water Conserv. 2007, 62, 157.
[191]
Shields, F.D., Jr.; Smiley, P.C., Jr.; Cooper, C.M. Design and management of edge-of-field water control structures for ecological benefits. J. Soil Water Conserv. 2002, 57, 151–157.
[192]
Smiley, P.C., Jr.; Knight, S.S.; Shields, F.D., Jr.; Cooper, C.M. Influence of gully erosion control on amphibian and reptile communities within riparian zones of channelized streams. Ecohydrology 2009, 2, 303–312, doi:10.1002/eco.59.
[193]
Manley, S.W.; Kaminski, R.M.; Rodrigue, P.B.; Dewey, J.C.; Schoenholtz, S.H.; Gerard, P.D.; Reinecke, K.J. Soil and nutrient retention in winter-flooded rice fields with implications for watershed management. J. Soil Water Conserv. 2009, 64, 173–182, doi:10.2489/jswc.64.3.173.
[194]
Rosgen, D.L. River restoration utilizing natural stability concepts. Land Water 1994, 38, 6–41.
[195]
Ward, A.; Mecklenburg, D.; Powell, G.E.; Brown, L.; Jayakaran, A. Two-Stage Channel Design Procedures. In Proceedings of the Self-Sustaining Solutions for Streams, Wetlands, and Watersheds Conference, 12–15 September 2004; American Society of Agricultural Engineers: St. Paul, MN, USA.
[196]
Powell, G.E.; Ward, A.D.; Mecklenburg, D.E.; Jayakaran, A.D. Two-stage channel systems: Part 1, a practical approach for sizing agricultural ditches. J. Soil Water Conserv. 2007, 62, 277–286.
[197]
Kr?ger, R.; Holland, M.M.; Moore, M.T.; Cooper, C.M. Plant senescence: a mechanism for nutrient release in temperate agricultural wetlands. Environ. Pollut. 2007, 146, 114–119, doi:10.1016/j.envpol.2006.06.005.
[198]
Kr?ger, R.; Cooper, C.M.; Moore, M.T. A preliminary study of alternative controlled drainage strategy in surface drainage ditches: Low grade weirs. Agr. Water Manage. 2008, 95, 678–684, doi:10.1016/j.agwat.2008.01.006.
[199]
Powell, K.L.; Bouchard, V. Is denitrification enhanced by the development of natural fluvial morphology in agricultural headwater ditches? J. N. Am. Benthol. Soc. 2010, 29, 761–772, doi:10.1899/09-028.1.
[200]
Roley, S.S.; Tank, J.L.; Stephen, M.L.; Johnson, L.T.; Beaulieu, J.J.; Witter, J.D. Floodplain restoration enhances denitrification and reach-scale nitrogen removal in an agricultural stream. Eco. Appl. 2012, 22, 281–297, doi:10.1890/11-0381.1.
[201]
Roley, S.S.; Tank, J.L.; Williams, W.L. Hydrologic connectivity increases denitrification in the hyporheic zone and restored floodplains of an agricultural stream. J. Geophys. Res. 2012, 117, 16.
[202]
Landwehr, K.; Rhoads, B.L. Depositional response of a headwater stream to channelization, east central Illinois, USA. River Res. Appl. 2003, 19, 77–100, doi:10.1002/rra.699.
[203]
D’Ambrosio, J.L.; Ward, A.; Witter, J.D.; Tank, J.L. Ecological services of constructed two-stage agricultural ditches. In proceedings of 21st Century Watershed Technology Conference and Workshop Improving Water Quality and the Environment, Bari, Italy, 27 May–1 June 2012; p. 8.
[204]
Kramer, G. Design, Construction, and Assessment of a self-sustaining drainage ditch. Master’s Thesis, University of Minnesota, Minneapolis, MN, USA, 2011.
[205]
Janssen, J.R. Environmental and Management Influences on Fish and Invertebrate Communities in Agricultural Headwater Systems. Master’s Thesis, University of Michigan, Ann Arbor, MI, USA, 2008.
[206]
Sharpley, A.N.; Krogstad, T.; Kleinman, P.J.A.; Haggard, B.E.; Shigaki, F.; Saporito, L. Managing Natural Processes in drainage ditches for non-point source phosphorus control. J. Soil Water Conserv. 2007, 62, 197–206.
[207]
Shields, F.D. Jr.; Pezeshki, S.R.; Wilson, G.V.; Wu, W.; Dabney, S.M. Rehabilitation of an incised stream with plant materials: the dominance of geomorphic processes. Eco. Soc. 2008, 13, 54.
[208]
Gilliam, J.W.; Skaggs, R.W. Controlled agricultural drainage to maintain water quality. J. Irrig. Drain. E. ASCE 1986, 112, 254–263, doi:10.1061/(ASCE)0733-9437(1986)112:3(254).
[209]
Wesstr?m, I.; Messing, I.; Linner, H.; Lindstrom, J. Controlled drainage—Effects on drain outflow and water quality. Agr. Water Manage. 2001, 47, 85–100, doi:10.1016/S0378-3774(00)00104-9.
[210]
Simon, A.; Darby, S.E. Effectiveness of grade-control structures in reducing erosion along incised river channels: the case of Hotophia Creek, Mississippi. Geomorphology 2002, 42, 229–254.
[211]
Needelman, B.A.; Ruppert, D.E.; Vaughan, R.E. The role of ditch soil formation and redox biogeochemistry in mitigating nutrient and pollutant losses from agriculture. J. Soil Water Conserv. 2007, 62, 207–215.
[212]
Needelman, B.A.; Kleinman, P.J.A.; Strock, J.S.; Allen, A.L. Improved management of agriculture drainage ditches for water quality protection: An overview. J. Soil Water Conserv. 2007, 62, 171–178.
[213]
Woli, K.P.; David, M.B.; Cooke, R.A.; McIsaac, G.F.; Mitchell, C.A. Nitrogen balance in and export from agricultural fields associated with controlled drainage systems and denitrfying bioreactors. Eco. Eng. 2010, 36, 1558–1566, doi:10.1016/j.ecoleng.2010.04.024.
[214]
Penn, C.J.; Bryant, R.B; Kleinman, P.J.A.; Allen, A.L. Removing dissolved phosphorus from drainage ditch water with phosphorus sorbing materials. J. Soil Water Conserv. 2007, 62, 269–276.
[215]
Penn, C.J.; McGrath, J.M.; Bryant, R.B. Ditch Drainage Management for Water Quality Improvement. In Agricultural Drainage Ditches: Mitigation Wetlands for the 21st Century; Moore, M.T., Kr?ger, R., Eds.; Research Signpost: Kerala, India, 2010; pp. 151–173.
[216]
Van der Hoven, S.J.; Fromm, N.J.; Peterson, E.W. Quantifying nitrogen cycling beneath a meander of a low gradient, N-impacted, agricultural stream using tracers and numerical modeling. Hydrol. Process. 2008, 22, 1206–1215.
Peterson, E.W.; Benning, C. Factors influencing nitrate within a low-gradient agricultural stream. Environ. Earth Sci. 2012, doi:10.1007/s12665–012–1821-x.
[219]
Wondzell, S.M.; LaNier, J.; Haggerty, R.; Woodsmith, R.D.; Edwards, R.T. Changes in hyporheic exchange flow following experimental wood removal in a small, low-gradient stream. Water Resour. Res. 2009, doi:10.1029/2008WR007214.
[220]
Grimaldi, C.; Chaplot, V. Nitrate depletion during within-stream transport: Effects of exchange processes between streamwater, the hyporheic and riparian zones. Water Air Soil Poll. 2000, 124, 95–112, doi:10.1023/A:1005222513626.
[221]
Lefebvre, S.; Marmonier, P., Pinay; Bour, O.; Aqulina, L.; Baudy, J. Nutrient dynamics in interstitial low-order rural streams with different bedrock geology. Arch. Hydrol. 2005, 164, 169–191.
[222]
Kasahara, T.; Hill, A.R. Effects of riffle–step restoration on hyporheic zone chemistry in N-rich lowland streams. Can. J. Fish. Aquat. Sci. 2006, 63, 120–133, doi:10.1139/f05-199.
[223]
Kasahara, T.; Hill, A.R. Instream restoration: its effects on lateral stream-subsurface water exchange in urban and agricultural streams in southern Ontario. River Res. Appl. 2007, 23, 801–814, doi:10.1002/rra.1010.
[224]
Sawyer, A.H.; Cardenas, M.B.; Buttles, J. Hyporheic exchange due to channel-spanning logs. Water Resour. Res. 2011, doi:10.1029/2011WR010484.
[225]
Borin, M.; Bonaiti, G.; Giardini, L. Controlled drainage and wetlands to reduce agricultural pollution: A lysimetric study. J. Environ. Qual. 2001, 30, 1330–1340, doi:10.2134/jeq2001.3041330x.
[226]
Fausey, N.R. Drainage management for humid regions. Int. Agr. Eng. J. 2005, 14, 209–214.
[227]
Groffman, P.M.; Dorsey, A.M.; Mayer, P.M. N processing within geomorphic structures in urban streams. J. N. Am. Benthol. Soc. 2005, 24, 613–625.
[228]
Filoso, S.; Palmer, M.A. Assessing stream restoration effectiveness at reducing nitrogen export to downstream waters. Eco. Appl. 2011, 21, 1989–2006, doi:10.1890/10-0854.1.
[229]
Lautz, L.K.; Fanelli, R.M. Seasonal biogeochemical hotspots in the streambed around restoration structures. Biogeochemistry 2008, 91, 85–104, doi:10.1007/s10533-008-9235-2.
[230]
Robertson, W.D.; Merkley, L.C. In-stream bioreactor for agricultural nitrate treatment. J. Environ. Qual. 2009, 38, 230–237, doi:10.2134/jeq2008.0100.
[231]
Lalonde, V.; Madramootoo, C.A.; Trenhold, L.; Broughton, R.S. Effects of controlled drainage on nitrate concentrations in subsurface drain discharge. Agr. Water Manage. 1996, 29, 187–199.
[232]
Gilliam, J.W.; Skaggs, R.W.; Weed, S.B. Drainage control to diminish nitrate loss from agricultural fields. J. Environ. Qual. 1979, 8, 137–142.
[233]
Evans, R.O.; Gilliam, J.W.; Skaggs, R.W. Controlled Drainage Management Guidelines For Improving Water Quality; Technical Report for Cooperative Extension Service: Raleigh, NC, USA, 1991; p. 16.
[234]
Evans, R.O.; Skaggs, R.W.; Gilliam, J.W. Controlled versus conventional drainage effects on water quality. J. Irrig. Drain. E. ASCE 1995, 121, 271–276, doi:10.1061/(ASCE)0733-9437(1995)121:4(271).
[235]
Kr?ger, R.; Moore, M.T.; Jerry, L.; Farris, J.L.; Gopalan, M. Evidence for the Use of Low-Grade Weirs in Drainage Ditches to Improve Nutrient Reductions from Agriculture. Water Air Soil Poll. 2011, 221, 223–234.
[236]
Kr?ger, R.; Pierce, S.C.; Littlejohn, K.A.; Moore, M.T.; Farris, J.L. Decreasing nitrate-N loads to coastal ecosystems with innovative drainage management strategies in agricultural landscapes: An experimental approach. Agr. Water Manage. 2012, 103, 162–166.
[237]
Wesstr?m, I.; Messing, I. Effects of controlled drainage on N and P losses and N dynamics in a loamy sand with spring crops. Agr. Water Manage. 2007, 87, 229–240, doi:10.1016/j.agwat.2006.07.005.
[238]
Ng, H.Y.F.; Tan, C.S.; Drury, C.F.; Gaynor, J.D. Controlled drainage and subirrigation influences tile nitrate loss and corn yields in a sandy loam soil in Southwestern Ontario. Agri. Ecosyst. Environ. 2001, 1758, 1–8.
[239]
Tan, C.S.; Drury, C.F.; Soultani, M.; vanWesenbeeck, I.J.; Ng, H.Y.F.; Gaynor, J.D.; Welacky, T.W. Effect of controlled drainage and tillage on soil structure and tile drainage nitrate loss at the field scale. Water Sci. Technol. 1998, 38, 103–110.
[240]
Drury, C.F.; Tan, C.S.; Reynolds, W.D.; Welacky, T.W.; Oloya, T.O.; Gaynor, J.D. Managing Tile Drainage, Subirrigation, and Nitrogen Fertilization to Enhance Crop Yields and Reduce Nitrate Loss. J. Environ. Qual. 2009, 38, 1193–1204.
[241]
Bastien?, N.; ?aulien?. The impact of controlled drainage on water quality. Research for Rural Development 2009. In Proceedings of Annual 15th International Scientific Conference, Jelgava, Latvia, 20–22 May 2009; pp. 271–278.
[242]
Pierce, S.C.; Kr?ger, R. Low-grade weirs in agricultural ditches for sediment retention and nutrient reduction create in-stream wetlands. Wetland Sci. Pract. 2011, 28, 33–39.
[243]
Blackwell, M.S.A.; Pilgrim, E.S. Ecosystem services delivered by small-scale wetlands. Hydrol. Sci. J. 2011, 56, 1467–1484.
[244]
Hunt, P.G.; Stone, K.C.; Humenik, F.J.; Matheny, T.A.; Johnson, M.H. In-stream wetland mitigation of nitrogen contamination in a USA coastal plain stream. J. Environ. Qual. 1999, 28, 249–256.
[245]
O’Geen, A.T.; Maynard, J.J.; Dahlgren, R.A. Efficacy of constructed wetlands to mitigate non-point source pollution from irrigation tailwaters in the San Joaquin Valley, California, USA. Water Sci. Technol. 2007, 55, 55–61.
[246]
Tanner, C.C.; Nguyen, M.L.; Sukias, J.P.S. Nutrient removal by a constructed wetland treating subsurface drainage from grazed dairy pasture. Agri. Ecosyst. Environ. 2005, 105, 145–162.
[247]
Sukias, J.; Tanner, C. Surface flow constructed wetland as a drainage management tool—long term performance. In Adding to the Knowledge Base for the Nutrient Manager, Fertilizer & Lime Research Centre, Occasional Report No. 24; Currie, L.D., Christensen, C.L., Eds.; Massey University: Palmerston North, New Zealand, 2011; pp. 1–16.
[248]
Koskiaho, J.; Ekholm, P.; R?ty, M.; Riihim?ki, J.; Puustinen, M. Retaining agricultural nutrients in constructed wetlands—Experiences under boreal conditions. Eco. Eng. 2003, 20, 89–103.
[249]
Kovacic, D.A.; Twait, R.M.; Wallace, M.P.; Bowling, J.M. Use of created wetlands to improve water quality in the Midwest—Lake Bloomington case study. Eco. Eng. 2006, 28, 258–270.
[250]
Braskerud, B.C. Factors affecting nitrogen retention in small constructed wetlands treating agricultural non-point source pollution. Eco. Eng. 2002, 18, 351–370.
[251]
Braskerud, B.C. Factors affecting phosphorus retention in small constructed wetlands treating agricultural non-point source pollution. Eco. Eng. 2002, 19, 41–61.
[252]
Tomer, M.; Tanner, C.; Howard-Williams, C. Discussing wetlands, agriculture, and ecosystem services. Wetland Sci. Pract. 2009, 26, 26–29.
[253]
Pierce, S.C.; Kr?ger, R.; Prevost, D.; Poganski, B.; Flora, C.; Pierce, T. Field-scale monitoring of agricultural ditches as conduits of nitrogen, phosphorus, and suspended sediment in response to storm events and low-input drainage management: A case-study of the Tchula Lake Farm. In Proceedings of the Mississippi Water Resources Conference, Jackson, MS, USA, 3–5 April 2012.
[254]
Shields, F.D., Jr.; Knight, S.S.; Cooper, C.M. Can warmwater streams be rehabilitated using watershed-scale standard erosion control measures alone? Environ. Manage. 2007, 40, 62–79.
[255]
Litvan, M.E.; Stewart, T.W.; Pierce, C.L.; Larson, C.J. Effects of grade control structures on the macroinvertebrate assemblage of an agriculturally-impacted stream. River Res. Appl. 2008, 24, 218–233.
[256]
Litvan, M.E.; Stewart, T.W.; Pierce, C.L.; Larson, C.J. Fish Assemblages in a Western Iowa Stream Modified by Grade Control Structures. N. Am. J. Fish. Manage. 2008, 28, 1398–1413.
[257]
Santucci, V.J., Jr.; Gephard, S.R.; Pescitelli, S.M. Effects of Multiple Low-Head Dams on Fish, Macroinvertebrates, Habitat, and Water Quality in the Fox River, Illinois. N. Am. J. Fish. Manage. 2005, 25, 975–992.
[258]
Swift, M.J.; Izac, A.M.N.; van Noordwijk, M. Biodiversity and ecosystem services in agricultural landscapes—Are we asking the right questions? Agri. Ecosys. Environ. 2004, 104, 113–134.
[259]
MacArthur, R.H. Fluctuations of animal populations and a measure of community stability. Ecology 1955, 36, 533–536.
[260]
Griffin, J.N.; O’Gorman, E.J.; Emmerson, M.C.; Jenkins, S.R.; Klein, A.M.; Loreau, M.; Symstad, A. Biodiversity and the stability of ecosystem functioning. In Biodiversity, Ecosystem Functioning, and Human Wellbeing—An Ecological and Economic Perspective; Naeem, S., Bunker, D.E., Hector, A., Loreau, M., Perrings, C., Eds.; Oxford University Press: New York, NY, USA, 2009; pp. 78–93.
[261]
Doak, D.F.; Bigger, D.; Harding, E.K.; Marvier, M.A.; O’Malley, R.E.; Thomson, D. The statistical inevitability of stability–diversity relationships in community ecology. Am. Nat. 1998, 151, 264–276.
[262]
Vandewalle, M.; de Bello, F.; Berg, M.P.; Bolger, T.; Dolédec, S.; Dubs, F.; Feld, C.K.; Harrington, R.; Harrison, P.A.; Lavorel, S.; et al. Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers. Conserv. 2010, 19, 2921–2947.
[263]
MacArthur, R.H.; MacArthur, J.W. On bird species diversity. Ecology 1961, 42, 594–598.
[264]
Armitage, P.D.; Szoszkiewicz, K.; Blackburn, J.H.; Nesbitt, I. Ditch communities: A major contributor to floodplain biodiversity. Aqu. Conserv. Mar. Freshwater Ecosyst. 2003, 13, 165–185.
[265]
Hanski, I. Metapopulation Ecology; Oxford University Press: Oxford, UK, 1998.
[266]
Knapp, C.W.; Dodds, W.K.; Wilson, K.C.; O’Brien, J.M.; Graham, D.W. Spatial heterogeneity of denitrification genes in a highly homogenous urban stream. Environ. Sci. Technol. 2009, 43, 4273–4279.
[267]
Palmer, M.A.; Menninger, H.L.; Bernhardt, E. River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshwater Biol. 2010, 55, 205–222.
[268]
Dimitrakopoulous, P.G.; Schmid, B. Biodiversity effects increase linearly with biotope space. Eco. Lett. 2004, 7, 574–583.
[269]
Pedersen, T.C.M.; Baattrup-Pedersen, A.; Madsen, T.V. Effects of stream restoration and management on plant communities in lowland streams. Freshwater Biol. 2006, 51, 161–179.
[270]
Vivian-Smith, G. Microtopographic heterogeneity and floristic diversity in experimental wetland communities. J. Ecol. 1997, 85, 71–82.
[271]
Lundholm, J.T. Plant Species diversity and environmental heterogeneity: Spatial scale and competing hypotheses. J. Veg. Sci. 2009, 20, 377–391.
Miller, R.C.; Zedler, J.B. Responses of native and invasive wetland plants to hydroperiod and water depth. Plant Ecol. 2003, 167, 57–69.
[274]
Fraser, L.H.; Karnezis, J.P. A comparative assessment of seedling survival and biomass accumulation for fourteen wetland plant species grown under minor water-depth differences. Wetlands 2005, 25, 520–530, doi:10.1672/0277-5212(2005)025[0520:ACAOSS]2.0.CO;2.
[275]
Franklin, P.; Dunbar, M.; Whitehead, P. Flow controls on lowland river macrophytes: A review. Scie. Total Environ. 2008, 400, 369–378, doi:10.1016/j.scitotenv.2008.06.018.
[276]
Bornette, G.; Puijalon, S. Response of aquatic plants to abiotic factors: A review. Aquat. Sci. 2011, 73, 1–14, doi:10.1007/s00027-010-0162-7.
[277]
Lorenz, A.W.; Korte, T.; Sundermann, A.; Januschke, K.; Haase, P. Macrophytes respond to reach-scale river restorations. J. Appl. Ecol. 2012, 49, 202–212, doi:10.1111/j.1365-2664.2011.02082.x.
[278]
Davies, B.; Biggs, J.; Williams, P.; Whitfield, M.; Nicolet, P.; Sear, D.; Bray, S.; Maund, S. Comparative biodiversity of aquatic habitats in the European agricultural landscape. Agri. Ecosysts. Environ. 2008, 125, 1–8, doi:10.1016/j.agee.2007.10.006.
[279]
Davies, B.R.; Biggs, J.; Williams, P.J.; Lee, J.T.; Thompson, S. A comparison of the catchment sizes of rivers, streams, ponds, ditches and lakes: implications for protecting aquatic biodiversity in an agricultural landscape. Hydrobiologia. 2008, 597, 7–17, doi:10.1007/s10750-007-9227-6.
[280]
de Snoo, G.R.; Naus, N.; Verhulst, J.; van Ruijven, J.; Schaffers, A.P. Long-term changes in plant diversity of grasslands under agricultural and conservation management. Appl. Veg. Sci. 2012, 15, 299–306.
[281]
Leng, X.; Musters, C.J.M.; de Snoo, G.R. Restoration of plant diversity on ditch banks: Seed and site limitation in response to agri-environment schemes. Biol. Conserv. 2009, 142, 1340–1349, doi:10.1016/j.biocon.2009.01.019.
[282]
Geertsema, W.; Opdam, P.; Kropff, M.J. Plant strategies and agricultural landscapes: Survival in spatially and temporally fragmented habitat. Landscape Ecol. 2002, 17, 263–279, doi:10.1023/A:1020228708956.
[283]
Milsom, T.P.; Sherwood, A.J.; Rose, S.C.; Town, S.J.; Runham, S.R. Dynamics and management of plant communities in ditches bordering arable fenland in eastern England. Agri. Ecosys. Environ. 2004, 103, 85–99, doi:10.1016/j.agee.2003.10.012.
[284]
Biggs, J.; Williams, P.; Whitfield, M.; Nicolet, P.; Brown, C.; Hollis, J.; Arnold, D.; Pepper, T. The freshwater biota of British agricultural landscapes and their sensitivity to pesticides. Agri. Ecosyst. Environ. 2007, 122, 137–148, doi:10.1016/j.agee.2006.11.013.
[285]
Beltman, B. Effects of weed control on species composition of aquatic plants and bank plants and macrofauna in ditches. Hydrol. Bull. 1987, 21, 171–179, doi:10.1007/BF02255443.
[286]
Best, E.P.H. The impact of mechanical harvesting regimes on the species composition of Dutch ditch vegetation: A quantitative approach. J. Aquat. Plant Manage. 1993, 31, 148–154.
[287]
Blomqvist, M.M.; Tamis, W.L.M.; Bakker, J.P.; Van der Meijden, E. Seed and (micro) site limitation in ditch banks: Germination, establishment and survival under different management regimes. J. Nat. Conserv. 2006, 14, 16–33, doi:10.1016/j.jnc.2005.08.003.
[288]
Geertsema, W.; Sprangers, J.T.C.M. Plant distribution patterns related to species characteristics and spatial and temporal habitat heterogeneity in a network of ditch banks. Plant Ecol. 2002, 162, 91–108, doi:10.1023/A:1020336908907.
[289]
van Zuidam, J.P.; Raaphorst, E.P.; Peeters, E.T.H.M. The role of propagule banks from drainage ditches dominated by free-floating or submerged plants in vegetation restoration. Restor. Ecol. 2012, 20, 416–425, doi:10.1111/j.1526-100X.2011.00784.x.
[290]
Mountford, J.O. The vegetation of artificial drainage channels within grazing marshes in the UK: How does its composition correspond with described communities? Biol. Environ. 2006, 106, 277–286, doi:10.3318/BIOE.2006.106.3.277.
[291]
Leng, X.; Musters, C.J.M.; de Snoo, G.R. Spatial variation in ditch bank plant species composition at the regional level: the role of environment and dispersal. J. Veg. Sci. 2010, 21, 868–875, doi:10.1111/j.1654-1103.2010.01190.x.
[292]
Lenssen, J.; Menting, F.; van der Putten, W.; Blom, K. Control of plant species richness and zonation of functional groups along a freshwater flooding gradient. OIKOS 1999, 86, 523–534, doi:10.2307/3546656.
[293]
Silvertown, J.; Dodd, M.E.; Gowing, D.J.G.; Mountford, J.O. Hydrologically defined niches reveal a basis for species richness in plant communities. Nature 1999, 400, 61–63, doi:10.1038/21877.
[294]
Casanova, M.T.; Brock, M.A. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities. Plant Ecol. 2000, 147, 237–250, doi:10.1023/A:1009875226637.
[295]
Best, E.P.H.; van der Schaaf, S.; Oomes, M.J.M. Responses of restored grassland ditch vegetation to hydrological changes, 1989–1992. Plant Ecol. 1995, 116, 107–122, doi:10.1007/BF00045302.
[296]
Pezeshki, S.R.; Anderson, P.H.; Shields, F.D., Jr. Effects of soil moisture regimes on growth and survival of black willow (Salix nigra) posts (cuttings). Wetlands 1998, 18, 460–470, doi:10.1007/BF03161538.
[297]
Li, S.; Pezeshki, S.R.; Goodwin, S. Effects of soil moisture regimes on photosynthesis and growth in cattail (Typha. latifolia). Acta Oecol. 2004, 25, 17–22.
[298]
Pezeshki, S.R.; Shields, F.D., Jr. Black willow cutting survival in streambank plantings, southeastern United States. J. Am. Water Resour. A. 2006, 42, 191–200.
[299]
Twisk, W.; Noordervliet, M.A.W.; ter Keurs, W.J. The nature value of the ditch vegetation in peat areas in relation to farm management. Aquat. Ecol. 2003, 37, 191–209, doi:10.1023/A:1023944028022.
[300]
Madsen, R.V.; Chambers, P.A.; James, W.F.; Koch, E.W.; Westlake, D.F. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia. 2001, 444, 71–84, doi:10.1023/A:1017520800568.
[301]
Schaller, J.L.; Royer, T.V.; David, M.B.; Tank, J.L. Denitrification associated with plants and sediments in an agricultural stream. J. N. Am. Benthol. Soc. 2004, 23, 667–676, doi:10.1899/0887-3593(2004)023<0667:DAWPAS>2.0.CO;2.
[302]
Janse, J.H.; van Puijenbroek, P.J.T.M. Effects of eutrophication in drainage ditches. Environ. Pollut. 1998, 102, 547–552.
[303]
Ko?i?, A.; Hengl, T.; Horvati?, J. Water nutrient concentrations in channels in relation to occurrence of aquatic plants: a case study in eastern Croatia. Hydrobiologia 2008, 603, 253–266, doi:10.1007/s10750-007-9276-x.
[304]
Goulder, R. Conservation of aquatic plants in artificial watercourses: are main drains a substitute for vulnerable navigation canals? Aqu. Conserv. Mar. Freshwater Ecosyst. 2008, 18, 163–174, doi:10.1002/aqc.828.
[305]
Syzmura, M.; Syzmura, T.; Dunajski, A.; Wolski, K. Grasses (Poaceae.) in riparian vegetation of watercourses in agriculture landscape. Pol. J. Environ. Stud. 2009, 18, 1217–1223.
[306]
Lu, T.; Keming, M.A.; Bojie, F.U.; Jieyu, Z.; Lu, Q.; Hudson, S. Diversity and composition of wetland communities along an agricultural drainage ditch density gradient. Polish J. Ecol. 2009, 57, 113–123.
[307]
Pywell, R.F.; Bullock, J.M.; Roy, D.B.; Warman, L.; Walker, K.J.; Rothery, P. Plant traits as predictors of performance in ecological restoration. J. Appl. Ecol. 2003, 40, 65–77, doi:10.1046/j.1365-2664.2003.00762.x.
[308]
Boutin, C.; Keddy, P.A. A functional classification of wetland plants. J. Veg. Sci. 1993, 4, 591–600, doi:10.2307/3236124.
[309]
Ervin, G.N. Spatio-temporally variable effects of a dominant macrophyte on vascular plant neighbors. Wetlands 2005, 25, 317–325, doi:10.1672/8.
[310]
Pierce, S.C.; Pezeshki, S.R. Vegetation in agricultural ditches: limitations to establishment, productivity, and ecosystem functioning. In Agricultural Drainage Ditches: Mitigation Wetlands of the 21st Century; Moore, M.T., Kr?ger, R., Eds.; Research Signpost: Trivandrum, India, 2010; pp. 75–106.
[311]
Shupryt, M.P.; Stelzer, R.S. Macrophyte beds contribute disproportionately to benthic invertebrate abundance and biomass in a sand plains stream. Hydrobiologia. 2009, 632, 329–339.
[312]
Pederson, M.L.; Friberg, N. Influence of disturbance on habitats and biological communities in lowland streams. Fundam. Appl. Limnol. 2009, 174, 27–41.
[313]
Brix, H. Do macrophytes play a role in constructed treatment wetlands? Water Sci. Technol. 1997, 35, 11–17.
[314]
Toet, S.; Huibers, L.H.F.A.; Logtestijn, R.S.P.V.L.; Verhoeven, J.T.A. Denitrification in the periphyton associated with plant shoots and in the sediment of a wetland system supplied with sewage treatment plant effluent. Hydrobiologia 2003, 501, 29–44.
[315]
Wu, Q.T.; Gao, T.; Zeng, S.; Chua, H. Plant biofilm oxidation ditch for in situ treatment of polluted waters. Eco. Eng. 2006, 28, 124–130.
[316]
Thomaz, S.M.; da Cunha, E.R. The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta. Limnol. Bras. 2010, 22, 218–236.
[317]
Dibble, E.D. Use of fractal dimension to assess habitat complexity and its influence on dominant invertebrates inhabiting tropical and temperate macrophytes. J. Freshwater Ecol. 2009, 24, 93,102.
[318]
Weisner, S.E.B.; Thiere, G. Effects of vegetation state on biodiversity and nitrogen retention in created wetlands: A test of the biodiversity–ecosystem functioning hypothesis. Freshwater Biol. 2010, 55, 387–396.
[319]
Read, J.; Wevill, T.; Fletcher, T.; Deletic, A. Variation among plant species in pollutant removal from stormwater in biofiltration systems. Water Res. 2008, 42, 893–902.
[320]
Srivastava, J.; Gupta, A.; Chandra, H. Managing water quality with aquatic macrophytes. Rev. Environ. Sci. Biotechnol. 2008, 7, 255–266.
[321]
Brisson, J.; Chazarenc, F. Maximizing pollutant removal in constructed wetlands: Should we pay more attention to macrophyte species selection? Sci. Total Environ. 2009, 407, 3923–3930.
[322]
Vymazal, J. Plants used in constructed wetlands with horizontal subsurface flow: A review. Hydrobiologia 2011, 674, 133–156.
[323]
Sand-Jensen, K. Influence of submerged macrophytes on sediment composition and near-bed flow in lowland streams. Freshwater Biol. 1998, 39, 663–679.
[324]
Kr?ger, R.; Moore, M.T.; Locke, M.A.; Cullum, R.F.; Steinriede, R.W., Jr.; Testa, S., III; Bryant, C.T.; Cooper, C.M. Evaluating the influence of wetland vegetation on chemical residence time in Mississippi Delta drainage ditches. Agr. Water Manage. 2009, 96, 1175–1179.
[325]
Asaeda, T.; Rajapakse, L.; Kanoh, M. Fine sediment retention as affected by annual shoot collapse: Sparganium. erectum as an ecosystem engineer in a lowland stream. River Res. Appl. 2010, 26, 1153–1169.
[326]
Braskerud, B.C. The influence of vegetation on sedimentation and resuspension of soil particles in small constructed wetlands. J. Environ. Qual. 2001, 30, 1447–1457, doi:10.2134/jeq2001.3041447x.
[327]
Stringfellow, W.; Graham, J.; Rogers, M.; Borglin, S.; Brunell, M.; Hanlon, J.; Spier, C.; Nguyen, K. Water quality changes occurring in agricultural drains of varying riparian function. In Agricultural Drainage Ditches: Mitigation Wetlands for the 21st Century; Moore, M.T., Kr?ger, R., Eds.; Research Signpost: Kerala, India, 2010; pp. 173–194.
[328]
Horppila, J.; Nurminen, L. The effect of an emergent macrophyte (Typha. augustifolia) on sediment resuspension in a shallow north temperate lake. Freshwater Biol. 2001, 46, 1447–1455.
[329]
Shields, F.D. Jr.; Bowie, A.J.; Cooper, C.M. Control of streambank erosion due to bed degradation with vegetation and structure. Water Resour. Bull. 1995, 31, 475–489.
[330]
Blom, C.W.P.M. Adaptations to flooding stress: From plant community to molecule. Plant Biol. 1999, 1, 261–273, doi:10.1111/j.1438-8677.1999.tb00252.x.
Jiang, C.; Fan, X.; Cui, G.; Zhang, Y. Removal of agricultural non-point source pollutants by ditch wetlands: implications for lake eutrophication control. Hydrobiologia 2007, 581, 319–327, doi:10.1007/s10750-006-0512-6.
[333]
Güsewell, S.; Koerselman, W. Variation in nitrogen and phosphorus concentrations of wetland plants. Perspect. Plant. Ecol. 2002, 5, 37–61, doi:10.1078/1433-8319-0000022.
[334]
Shields, F.D., Jr.; Cooper, C.M.; Testa, S., III; Ursic, M.E. Nutrient Transport in the Yazoo River Basin; U.S. Department of Agriculture, Agricultural Research Service, Water Quality, Ecology Research Unit, National Sedimentation Laboratory: Oxford, MS, USA, 2008.
[335]
DeBusk, T.A.; Peterson, J.E.; Reddy, K.R.; Graetz, D.A.; Clough, K.S. Optimization of the vegetative uptake of phosphorus from dairy wastewater. Technical Report for South Florida Water Management District: West Palm Beach, FL, 1989; p. 250. No.88–009–0625.
[336]
Barko, J.W.; Gunnison, D.; Carpenter, S.R. Sediment interactions with submersed macrophyte growth and community dynamics. Aquat. Bot. 1991, 41, 41–65.
[337]
Chen, R.L.; Barko, J.W. Effects of freshwater macrophytes on sediment chemistry. J. Freshwater Ecol. 1988, 4, 279–289.
[338]
Jeperson, D.N.; Sorrell, B.K.; Brix, H. Growth and root oxygen release by Typha latifolia and its effects on sediment methanogenesis. Aquat. Bot. 1998, 61, 165–180.
[339]
Neuman, G.; R?mhel, V. Root-induced changes in the availability of nutrients in the rhizosphere. In Plant Roots: The Hidden Half, 3rd; Waisel, Y., Eshel, A., Kafkafi, U., Eds.; Marcel Dekker: New York, NY, USA, 2002; pp. 617–649.
[340]
Ehrenfeld, J.G.; Ravit, B.; Elgersma, K. Feedback in the plant-soil system. Annu. Rev. Environ. Resour. 2005, 30, 75–115.
[341]
Rubio, G.; Oesterheld, M.; Alvarez, C.R.; Lavado, R.S. Mechanisms for the increase in phosphorus uptake of water-logged plants: Soil phosphorus availability, root morphology and uptake kinetics. Oecologia 1997, 112, 150–155.
[342]
Pierce, S.C.; Moore, M.T.; Larsen, D.; Pezeshki, S.R. Macronutrient (N,P,K) and redoximorphic metal (Fe, Mn) allocation in Leersia. oryzoides (Rice cutgrass) grown under different flood regimes. Water Air Soil Poll. 2010, 207, 73–84.
[343]
Bostic, E.M.; White, J.R. Soil phosphorus and vegetation influence on wetland phosphorus release after simulated drought. Soil Sci. Soc. Am. J. 2007, 71, 238–244.
Smith, D.R.; Pappas, E.A. Effect of ditch dredging on the fate of nutrients in deep drainage ditches of the Midwestern United States. J. Soil Water Conserv. 2007, 62, 252–261.
[346]
Smith, D.R.; Huang, C. Assessing nutrient transport following dredging of agricultural drainage ditches. Trans. ASABE 2010, 53, 429–436.
[347]
Arango, C.P.; Tank, J.L.; Schaller, J.L.; Royer, T.V.; Bernot, M.J.; David, M.B. Benthic organic carbon influences denitrification in streams with high nitrate concentration. Freshwater Biol. 2007, 52, 1210–1222.
[348]
Forshay, K.J.; Dodson, S.I. Macrophyte presence is an indicator of enhanced denitrification and nitrification in sediments of a temperate restored agricultural stream. Hydrobiologia. 2011, 668, 21–34.
[349]
Ullah, S.; Faulkner, S.P. Denitrification potential of different land-use types in an agricultural watershed, lower Mississippi valley. Eco. Eng. 2006, 28, 131–140.
[350]
Pierce, S.C.; Pezeshki, S.R.; Larsen, D.; Moore, M.T. Hydrology and species-specific effects of Bacopa. monnieri and Leersia. oryzoides on soil and water chemistry. Ecohydrology 2009, 2, 279–286.
[351]
Veraart, A.J.; de Bruijne, W.J.J.; de Klein, J.J.M.; Peeters, E.T.H.M.; Scheffer, M. Effects of aquatic vegetation type on denitrification. Biogeochemistry 2011, 104, 267–274.
[352]
DeBusk, T.A.; Peterson, J.E.; Reddy, K.R. Use of aquatic and terrestrial plants for removing phosphorus from dairy wastewaters. Eco. Eng. 1995, 5, 371–390.
[353]
Power, M.E.; Rainey, W.E.; Parker, M.S.; Sabo, J.L.; Smyth, A.; Khandwala, S.; Finlay, J.C.; McNeely, F.C.; Marsee, K.; Anderson, C. River to watershed subsidies in an old-growth conifer forest. In Food Webs at the Landscape Level; Polis, G.A., Power, M.E., Huxel, G., Eds.; University of Chicago Press: Chicago, IL, USA, 2004; pp. 217–240.
[354]
Jackson, J.K.; Fisher, S.G. Secondary production, emergence, and export of aquatic insects of a Sonoran Desert stream. Ecology 1986, 67, 629–638.
[355]
Richardson, J.S.; Zhang, Y.; Marczak, L.B. Resource Subsides across the land-freshwater interface and responses in recipient communities. River Res. Appl. 2010, 26, 55–66.
[356]
Nakano, S.; Murakami, M. Reciprocal subsides: Dynamic interdependence between terrestrial and aquatic food webs. Proc. Nat. Acad. Sci. USA 2001, 98, 166–170.
[357]
Gratton, C.; Vander Zanden, M.J. Flux of aquatic insect productivity to land: comparison of lentic and lotic ecosystems. Ecology 2009, 90, 2689–2699.
[358]
Lamberti, G.A.; Chaloner, D.T.; Hershey, A.E. Linkages among aquatic ecosystems. J. N. Am. Benthol. Soc. 2010, 29, 245–263.
Fagan, W.F.; Siemann, E.; Mitter, C.; Denno, R.F.; Huberty, A.F.; Woods, H.A.; Elser, J.J. Nitrogen in insects: Implications for trophic complexity and species diversification. Am. Nat. 2002, 160, 784–802.
[361]
Werner, I.; Markiewicz, D.A.; Goding, K.; Reece, K. Benthic macroinvertebrate communities in ephemeral agricultural drainage ditches of California’s Central Valley. Moore, M.T., Kr?ger, R., Eds.; Research Signpost: Kerala, India, 2010; pp. 1–15.
[362]
Blackburn, M.; Mazzacano, C. Using Aquatic Macroinvertebrates As Indicators of Streamflow Duration: Washington and Idaho Indicators; The Xerces Society for Invertebrate Conservation: Portland, OR, USA, 2012.
[363]
Rabini, C.F.; Wallace, G.S. The influence of flow variation on the ability to evaluate the biological health of headwater streams. Hydrology, Water Resources and Ecology in Headwaters. In Proceedings of the HeadWater 1998 Conference, Meran/Merano, Italy, 20–23 April 1998.
[364]
Williams, D.D.; Hynes, H.B.N. The ecology of temporary streams I: The faunas of two Canadian streams. Int. Rev. Ges. Hydrobio. 1976, 61, 761–787.
[365]
Feldman, D.L.; Farris, J.L.; Moore, M.T.; Cooper, C.M. A characterization of benthic macroinvertebrate communities in agricultural drainage ditches of the northeast Arkansas Delta, USA. Moore, M.T., Kroger, R., Eds.; Research Signpost: Kerala, India, 2010; pp. 17–35.
[366]
Shieh, S.; Ward, J.V.; Kondratieff, B.C. Energy flow through macroinvertebrates in a polluted plains stream. J. N. Am. Benthol. Soc. 2002, 21, 660–675.
[367]
Verdonschot, R.C.M.; Keizer-Vlek, H.E.; Verdonschot, P.F.M. Biodiversity value of agricultural drainage ditches: a comparative analysis of the aquatic invertebrate fauna of ditches and small lakes. Aquat. Conserv. Mar. Freshwater Ecosys. 2011, 21, 715–727.
[368]
Seale, D. Influence of amphibian larvae on primary production, nutrient flux, and competition in a pond ecosystem. Ecology 1980, 61, 1531–1550.
[369]
Regester, K.J.; Whiles, M.R.; Lips, K.R. Variation in the trophic basis of production and energy flow associated with emergence of larval salamander assemblages from forest ponds. Freshwater Biol. 2008, 53, 1754–1767.
[370]
Regester, K.J.; Lips, K.R.; Whiles, M.R. Energy flow and subsidies associated with the complex life cycle of ambystomatid salamanders in ponds and adjacent forest in southern Illinois. Oceologia 2006, 147, 303–314.
[371]
Relyea, R.A. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Eco. Appl. 2005, 15, 618–627.
[372]
Manna, R.M; Hyne, R.V.; Choung, C.B.; Wilson, S.P. Amphibians and agricultural chemicals: Review of the risks in a complex environment. Environ. Pollut. 2009, 157, 2903–2927.
[373]
Vanni, M.J. Nutrient cycling by animals in freshwater ecosystems. Annu. Rev. Ecol. Syst. 2002, 33, 341–370.
[374]
Small, G.E.; Helton, A.M.; Kazanci, C. Can consumer stoichiometric regulation control nutrient spiraling in streams? J. N. Am. Benthol. Soc. 2009, 28, 747–765.
[375]
Nahlik, A.M.; Kentula, M.E.; Fennessy, M.S.; Landers, D.H. Where is the consensus? A proposed foundation for moving ecosystem service concepts into practice. Eco. Econ. 2012, 77, 27–35.