全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biology  2012 

Will Climate Change, Genetic and Demographic Variation or Rat Predation Pose the Greatest Risk for Persistence of an Altitudinally Distributed Island Endemic?

DOI: 10.3390/biology1030736

Keywords: climate change, genetic variation, growth rates, population growth

Full-Text   Cite this paper   Add to My Lib

Abstract:

Species endemic to mountains on oceanic islands are subject to a number of existing threats (in particular, invasive species) along with the impacts of a rapidly changing climate. The Lord Howe Island endemic palm Hedyscepe canterburyana is restricted to two mountains above 300 m altitude. Predation by the introduced Black Rat ( Rattus rattus) is known to significantly reduce seedling recruitment. We examined the variation in Hedyscepe in terms of genetic variation, morphology, reproductive output and demographic structure, across an altitudinal gradient. We used demographic data to model population persistence under climate change predictions of upward range contraction incorporating long-term climatic records for Lord Howe Island. We also accounted for alternative levels of rat predation into the model to reflect management options for control. We found that Lord Howe Island is getting warmer and drier and quantified the degree of temperature change with altitude (0.9 °C per 100 m). For H. canterburyana, differences in development rates, population structure, reproductive output and population growth rate were identified between altitudes. In contrast, genetic variation was high and did not vary with altitude. There is no evidence of an upward range contraction as was predicted and recruitment was greatest at lower altitudes. Our models predicted slow population decline in the species and that the highest altitude populations are under greatest threat of extinction. Removal of rat predation would significantly enhance future persistence of this species.

References

[1]  MacArthur, R.H.; Wilson, E.O. The Theory of Island Biogeography; Princeton University Press: Princeton, NJ, USA, 1967.
[2]  Simberloff, D. Extinction-proneness of island species-Causes and management implications. Raffles Bull. Zool. 2000, 48, 1–9.
[3]  Dransfield, J.; Uhl, N.W.; Asmussen, C.B.; Baker, W.J.; Harley, M.M.; Lewis, C.E. Genera Palmarum: The Evolution and Classification of Palms; Royal Botanic Gardens, Kew: Richmond, Surry, UK, 2008.
[4]  Kissling, W.D.; Baker, W.J.; Balslev, H.; Barfod, A.S.; Borchsenius, F.; Dransfield, J.; Govaerts, R.; Svenning, J.-C. Quaternary and pre-Quaternary historical legacies in the global distribution of a major tropical plant lineage. Glob. Ecol. Biogeogr. 2012, 21, 909–921, doi:10.1111/j.1466-8238.2011.00728.x.
[5]  Savolainen, V.; Anstett, M.C.; Lexer, C.; Hutton, I.; Clarkson, J.J.; Norup, M.V.; Powell, M.P.; Springate, D.; Salamin, N.; Baker, W.J. Sympatric speciation in palms on an oceanic island. Nature 2006, 441, 210–213.
[6]  Babik, W.; Butlin, R.K.; Baker, W.J.; Papadopulos, A.S.T.; Boulesteix, M.; Anstett, M.C.; Lexer, C.; Hutton, I.; Savolainen, V. How sympatric is speciation in the Howea palms of Lord Howe Island? Mol. Ecol. 2009, 18, 3629–3638, doi:10.1111/j.1365-294X.2009.04306.x.
[7]  Still, C.J.; Foster, P.N.; Schneider, S.H. Simulating the effects of climate change on tropical montane cloud forests. Nature 1999, 398, 608–610.
[8]  Hamilton, L.S. Mountain Cloud Forest Conservation and Research: A Synopsis. Mt. Res. Dev. 1993, 15, 259–266, doi:10.2307/3673933.
[9]  Bradshaw, A.D. Evolutionary Significance of Phenotypic Plasticity in Plants. Adv. Genet. 1965, 13, 115–155, doi:10.1016/S0065-2660(08)60048-6.
[10]  Guo, H.; Mazer, S.J.; Du, G.Z. Geographic variation in seed mass within and among nine species of Pedicularis (Orobanchaceae): Effects of elevation, plant size and seed number per fruit. J. Ecol. 2010, 98, 1232–1242, doi:10.1111/j.1365-2745.2010.01688.x.
[11]  Takahashi, K. Effects of altitude and competition on growth and mortality of the conifer Abies sachalinensis. Ecol. Res. 2010, 25, 801–812, doi:10.1007/s11284-010-0710-6.
[12]  Green, P.S. Norfolk Island and Lord Howe Island; Australian Government Publishing Service: Canberra, Australia, 1994; Volume 49 Oceanic Islands 1.
[13]  LHIB. Draft Review of the Permanent Park Preserve Plan of Management; Report to the Lord Howe Island Board: Lord Howe Island, Australia, 2002.
[14]  Harris, R.; Cassis, G.; Auld, T.; Hutton, I. Floristics and structure of the mossy cloud forest of Mt Gower summit, Lord Howe Island. Pac. Conserv. Biol. 2005, 11, 246–256.
[15]  Hedyscepe canterburyana. IUCN Red List of Threatened Species. Version 2010.4. International Union for Conservation of Nature and Natural Resources. Available online: http://www.iucnredlist.org/ (accessed on 19/08/2011).
[16]  Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; Ferreira de Siqueira, M.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148.
[17]  Schwartz, M.W.; Iverson, L.R.; Prasad, A.M.; Matthews, S.N.; O’Connor, R.J. Predicting extinctions as a result of climate change. Ecology 2006, 87, 1611–1615, doi:10.1890/0012-9658(2006)87[1611:PEAARO]2.0.CO;2.
[18]  Huntley, B. How Plants Respond to Climate Change: Migration Rates, Individualism and the Consequences for Plant Communities. Ann. Bot. (Lond.) 1991, 67, 15–22.
[19]  Lenoir, J.; Gégout, J.C.; Pierrat, J.C.; Bontemps, J.D.; Dh?te, J.F. Differences between tree species seedling and adult altitudinal distribution in mountain forests during the recent warm period (1986-2006). Ecography 2009, 32, 765–777, doi:10.1111/j.1600-0587.2009.05791.x.
[20]  Chen, I.C.; Shiu, H.J.; Benedick, S.; Holloway, J.D.; Chey, V.K.; Barlow, H.S.; Hill, J.K.; Thomas, C.D. Elevation increases in moth assemblages over 42 years on a tropical mountain. Proc. Natl. Acad. Sci. USA 2009, 106, 1479–1483.
[21]  Walther, G.R.; Gritti, E.S.; Berger, S.; Hickler, T.; Tang, Z.; Sykes, M.T. Palms tracking climate change. Glob. Ecol. Biogeogr. 2007, 16, 801–809, doi:10.1111/j.1466-8238.2007.00328.x.
[22]  Le Roux, P.C.; McGeoch, M.A. Rapid range expansion and community reorganization in response to warming. Glob. Change Biol. 2008, 14, 2950–2962, doi:10.1111/j.1365-2486.2008.01687.x.
[23]  Dang, H.S.; Zhang, Y.J.; Jiang, M.X.; Zhang, Q.F. Growth performance and range shift of the subalpine fir (Abies fargesii) in the Qinling Mountains, China. Int. J. Sustain. Dev. World Ecol. 2010, 17, 162–171, doi:10.1080/13504500903565037.
[24]  Auld, T.D.; Hutton, I.; Ooi, M.K.J.; Denham, A.J. Disruption of recruitment in two endemic palms on Lord Howe Island by invasive rats. Biol. Invasions 2010, 12, 1–11, doi:10.1007/s10530-009-9427-2.
[25]  Markham, A. Potential impacts of climate change on tropical forest ecosystems. Clim. Change 1998, 39, 141–143, doi:10.1023/A:1005396327379.
[26]  Foster, P. The potential impacts of global climate change on tropical montane cloud forests. Earth Sci. Rev. 2001, 55, 73–106, doi:10.1016/S0012-8252(01)00056-3.
[27]  Auld, T.D.; Hutton, I. Conservation Issues for the vascular flora of Lord Howe Island. Cunninghamia 2004, 8, 490–500.
[28]  Implications of climate change for Australia’s World Heritage properties: A preliminary assessment. Technical Report for Department of the Environment, Water, Heritage and the Arts: Fenner School of Environment and Society, the Australian National University, Canberra, Australia, June 2009;
[29]  Enright, N.J.; Watson, A.D. Population dynamics of the nikau palm, Rhopalostylis sapida (Wendl. et Drude), in a temperate forest remnant near Auckalnd, New Zealand. N. Z. J. Bot. 1992, 30, 29–43, doi:10.1080/0028825X.1992.10412883.
[30]  Rodríguez-Buriticá, S.; Orjuela, M.A.; Galeano, G. Demography and life history of Geonoma orbignyana: An understory palm used as foliage in Colombia. For. Ecol. Manag. 2005, 211, 329–340, doi:10.1016/j.foreco.2005.02.052.
[31]  Widyatmoko, D.; Burgman, M.A.; Guhardja, E.; Mogea, J.P.; Walujo, E.B.; Setiadi, D. Population status, demography and habitat preferences of the threatened lipstick palm Cyrtostachys renda Blume in Kerumutan Reserve, Sumatr. Acta Oecol. 2005, 28, 107–118, doi:10.1016/j.actao.2005.03.003.
[32]  Gienapp, P.; Teplitsky, C.; Alho, J.S.; Mills, J.A.; Meril?, J. Climate change and evolution: Disentangling environmental and genetic responses. Mol. Ecol. 2008, 17, 167–178, doi:10.1111/j.1365-294X.2007.03413.x.
[33]  Lande, R. Genetics and demography in biological conservation. Science 1988, 241, 1455–1460.
[34]  Jump, A.S.; Marchant, R.; Pe?uelas, J. Environmental change and the option value of genetic diversity. Trends Plant Sci. 2009, 14, 51–58, doi:10.1016/j.tplants.2008.10.002.
[35]  Bradshaw, A.D.; McNeilly, T. Evolutionary Response to Global Climatic Change. Ann. Bot. (Lond.) 1991, 67, 5–14.
[36]  Jump, A.S.; Pe?uelas, J. Running to stand still: Adaptation and the response of plants to rapid climate change. Ecol. Lett. 2005, 8, 1010–1020, doi:10.1111/j.1461-0248.2005.00796.x.
[37]  Davis, M.B.; Shaw, R.G. Range shifts and adaptive responses to quaternary climate change. Science 2001, 292, 673–679, doi:10.1126/science.292.5517.673.
[38]  Pfennig, D.W.; Wund, M.A.; Snell-Rood, E.C.; Cruickshank, T.; Schlichting, C.D.; Moczek, A.P. Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol. Evol. 2010, 25, 459–467, doi:10.1016/j.tree.2010.05.006.
[39]  De Jong, G. Evolution of phenotypic plasticity: Patterns of plasticity and the emergence of ecotypes. New Phytol. 2005, 166, 101–118, doi:10.1111/j.1469-8137.2005.01322.x.
[40]  Zizumbo-Villarreal, D.; Fernández-Barrera, M.; Torres-Hernández, N.; Colunga-GarcíaMarín, P. Morphological variation of fruit in Mexican populations of Cocos nucifera L. (Arecaceae) under in situ and ex situ conditions. Genet. Res. Crop Evol. 2005, 52, 421–434, doi:10.1007/s10722-005-2253-1.
[41]  Fleischer-Dogley, F.; Kettle, C.J.; Edwards, P.J.; Ghazoul, J.; M??tt?nen, K.; Kaiser-Bunbury, C.N. Morphological and genetic differentiation in populations of the dispersal-limited coco de mer (Lodoicea maldivica): Implications for management and conservation. Divers. Distrib. 2011, 17, 235–243, doi:10.1111/j.1472-4642.2010.00732.x.
[42]  Crimmins, T.M.; Crimmins, M.A.; Bertelsen, C.D. Flowering range changes across an elevation gradient in response to warming summer temperatures. Glob. Change Biol. 2009, 15, 1141–1152, doi:10.1111/j.1365-2486.2008.01831.x.
[43]  Sander, T.; K?nig, S.; Rothe, G.M.; Jan?en, A.; Weisgerber, H. Genetic variation of European beech (Fagus sylvatica L.) along an altitudinal transect at mount Vogelsberg in Hesse, Germany. Mol. Ecol. 2000, 9, 1349–1361, doi:10.1046/j.1365-294x.2000.01014.x.
[44]  Bellusci, F.; Pellegrino, G.; Palermo, A.M.; Gargano, D.; Musacchio, A. Genetic differentiation of the endemic orophyte Campanula pollinensis along an altitudinal gradient. Plant Biosyst. 2005, 139, 349–356, doi:10.1080/11263500500359409.
[45]  Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395.
[46]  Minorsky, P.V. The Hot and the Classic. Plant Physiol. 2002, 129, 1421–1422, doi:10.1104/pp.900042.
[47]  Frankham, R. Genetics and extinction. Biol. Conserv. 2005, 126, 131–140, doi:10.1016/j.biocon.2005.05.002.
[48]  Pullin, A.S. Conservation Biology; Cambridge University Press: Cambridge, New York ,NY, USA, 2002.
[49]  Caujapé-Castells, J.; Tye, A.; Crawford, D.J.; Santos-Guerra, A.; Sakai, A.; Beaver, K.; Lobin, W.; Vincent Florens, F.B.; Moura, M.; Jardim, R.; et al. Conservation of oceanic island floras: Present and future global challenges. Perspect. Plant Ecol. 2010, 12, 107–129, doi:10.1016/j.ppees.2009.10.001.
[50]  Campbell, D.J.; Atkinson, I.A.E. Effects of kiore (Rattus exulans Peale) on recruitment of indigenous coastal trees on northern offshore islands of New Zealand. J. Roy. Soc. N. Z. 1999, 29, 265–290, doi:10.1080/03014223.1999.9517597.
[51]  Campbell, D.J.; Atkinson, I.A.E. Depression of tree recruitment by the Pacific rat (Rattus exulans Peale) on New Zealand’s northern offshore islands. Biol. Conserv. 2002, 107, 19–35, doi:10.1016/S0006-3207(02)00039-3.
[52]  Chapin, M.H. Rat Damage on Native Hawaiian Palms. Palms 2004, 48, 153–155.
[53]  Meyer, J.Y.; Butaud, J.F. The impacts of rats on the endangered native flora of french Polynesia (Pacific Islands): Drivers of plant extinction or coup de grace species? Biol. Invasions 2009, 11, 1569–1585, doi:10.1007/s10530-008-9407-y.
[54]  Billing, J.; Harden, B. Control of introduced Rattus rattus L. on Lord Howe Island. I. The response of mouse populations to warfarin bait used to control rats. Wildl. Res. 2000, 27, 655–658, doi:10.1071/WR99012.
[55]  Williams, S.E.; Shoo, L.P.; Isaac, J.L.; Hoffmann, A.A.; Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 2008, 6, e325, doi:10.1371/journal.pbio.0060325.
[56]  Thomas, C.D. Translocation of species, climate change, and the end of trying to recreate past ecological communities. Trends Ecol. Evol. 2011, 26, 216–221, doi:10.1016/j.tree.2011.02.006.
[57]  Core Writing Team. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In Intergovernmental Panel on Climate Change; Pachauri, R.K., Resinger, A., Eds.; IPCC: Geneva, Switzerland, 2007.
[58]  CSIRO. BOM State of the Climate; CSIRO & Australian Bureau of Meteorology: Canberra, Australia, 2012.
[59]  Rotstayn, L.D.; Collier, M.A.; Dix, M.R.; Feng, Y.; Gordon, H.B.; O’Farrell, S.P.; Smith, I.N.; SSyktus, J. Improved simulation of Australian climate and ENSO-related rainfall variability in a global climate model with an interactive aerosol treatment. Int. J. Climatol. 2010, 30, 1067–1088.
[60]  Loope, L.L.; Giambelluca, T.W. Vulnerability of island tropical montane cloud forests to climate change, with special reference to East Maui, Hawaii. Clim. Change 1998, 39, 503–517, doi:10.1023/A:1005372118420.
[61]  Raxworthy, C.J.; Pearson, R.G.; Rabibisoa, N.; Rakotondrazafy, A.M.; Ramanamanjato, J.B.; Raselimanana, A.P.; Wu, S.; Nussbaum, R.A.; Stone, D.A. Extinction vulnerability of tropical montane endemism from warming and upslope displacement: A preliminary appraisal for the highest massif in Madagascar. Glob. Change Biol. 2008, 14, 1703–1720, doi:10.1111/j.1365-2486.2008.01596.x.
[62]  Whittaker, R.J.; Bush, M.B.; Richards, K. Plant recolonization and vegetation succession on the Krakatau Islands, Indonesia. Ecol. Monogr. 1989, 59, 59–123, doi:10.2307/2937282.
[63]  Pounds, J.A.; Fogden, M.P.L.; Campbell, J.H. Biological response to climate change on a tropical mountain. Nature 1999, 398, 611–615.
[64]  Pettit, N.E.; Dowe, J.L. Distribution and population structure of the vulnerable riparian palm Livistona lanuginosa A. N. Rodd (Arecaceae) in the Burdekin River catchment, north Queensland. Pac. Conserv. Biol. 2003, 9, 207–214.
[65]  Wilson, L. Lord Howe Island: NSW, Australia, 2010.
[66]  Svenning, J.C. Environmental heterogeneity, recruitment limitation and the mesoscale distribution of palms in a tropical montane rain forest (Maquipucuna, Ecuador). J. Trop. Ecol. 2001, 17, 97–113, doi:10.1017/S0266467401001067.
[67]  Widyatmoko, D.; Burgman, M. Influences of edaphic factors on the distribution and abundances of a rare palm (Cyrtostachys renda) in a peat swamp forest in eastern Sumatra, Indonesia. Aust. Ecol. 2006, 31, 964–974, doi:10.1111/j.1442-9993.2006.01672.x.
[68]  Tomlinson, P.B. The Structural Biology of Palms; Oxford University Press: Oxford, UK, 1990.
[69]  Blach-Overgaard, A.; Svenning, J.C.; Dransfield, J.; Greve, M.; Balslev, H. Determinants of palm species distributions across Africa: The relative roles of climate, non-climatic environmental factors, and spatial constraints. Ecography 2010, 33, 380–391.
[70]  Otero-Arnaiz, A.; Oyama, K. Reproductive phenology, seed-set and pollination in Chamaedorea alternans, an understorey dioecious palm in a rain forest in Mexico. J. Trop. Ecol. 2001, 17, 745–754.
[71]  Adler, G.H.; Lambert, T.D. Spatial and temporal variation in the fruiting phenology of palms in isolated stands. Plant Species Biol. 2008, 23, 9–17, doi:10.1111/j.1442-1984.2008.00202.x.
[72]  Shapcott, A.; Hutton, I.; Baker, W.J.; Auld, T. Conservation genetics and ecology of an endemic montane palm on Lord Howe Islandand potential for resilience. Conserv. Genet. 2012, 13, 257–270, doi:10.1007/s10592-011-0282-1.
[73]  Menzel, A.; Sparks, T.H.; Estrella, N.; Roy, D.B. Altered geographic and temporal variability in phenology in response to climate change. Glob. Ecol. Biogeogr. 2006, 15, 498–504.
[74]  Bradshaw, W.E.; Holzapfel, C.M. Genetic response to rapid climate change: It’s seasonal timing that matters. Mol. Ecol. 2008, 17, 157–166, doi:10.1111/j.1365-294X.2007.03509.x.
[75]  Dowe, J.L.; Benzie, J.; Ballment, E. Ecology and genetics of Carpoxylon macrospermum H Wendl & Drude (Arecaceae), an endangered palm from Vanuatu. Biol. Conserv. 1997, 79, 205–216, doi:10.1016/S0006-3207(96)00094-8.
[76]  Eguiarté, L.E.; Perez-Nasser, N.; Pi?ero, D. Genetic structure, outcrossing rate and heterosis in Astrocaryum mexicanum (tropical palm): Implications for evolution and conservation. Heredity 1992, 69, 217–228, doi:10.1038/hdy.1992.119.
[77]  Luna, R.; Epperson, B.K.; Oyama, K. High levels of genetic variability and inbreeding in two Neotropical dioecious plams with contrasting life histories. Heredity 2007, 99, 466–476, doi:10.1038/sj.hdy.6801027.
[78]  Shapcott, A. Comparison of the population genetics and densities of five Pinanga palm species at Kuala Belalong, Brunei. Mol. Ecol. 1999, 8, 1641–1654, doi:10.1046/j.1365-294x.1999.00749.x.
[79]  Navascues, M.; Vendramin, G.G.; Emerson, B.C. The Effect of Altitude on the Pattern of Gene Flow in the Endemic Canary Island Pine, Pinus canariensis. Silvae Genet. 2008, 57, 357–363.
[80]  Hartl, D.L. A Primer of Population Genetics, 3rd ed.; Sinauer Associates: Sunderland, MA, USA, 2000.
[81]  Cibrián-Jaramillo, A.; Bacon, C.D.; Garwood, N.C.; Bateman, R.M.; Thomas, M.M.; Russell, S.; Bailey, C.D.; Hahn, W.J.; Bridgewater, S.G.M.; DeSalle, R. Population genetics of the understory fishtail palm Chamaedorea ernesti-augusti in Belize: High genetic connectivity with local differentiation. BMC Genet. 2009, 10, 65.
[82]  Scariot, A.; Lleras, E.; Hay, J.D. Reproductive biology of the palm Acrocinua aculeata in Central Brazil. Biotropica 1991, 23, 12–22, doi:10.2307/2388683.
[83]  Ghazoul, J. Pollen and seed dispersal among dispersed plants. Biol. Rev. Camb. Philos. 2005, 80, 413–443, doi:10.1017/S1464793105006731.
[84]  Gimenez-Benavides, L.; Albert, M.J.; Iriondo, J.M.; Escudero, A. Demographic processes of upward range contraction in a long-lived Mediterranean high mountain plant. Ecography 2011, 34, 85–93.
[85]  Vandermeer, J.H. 377: On the Construction of the Population Projection Matrix for a Population Grouped in Unequal Stages. Biometrics 1975, 31, 239–242, doi:10.2307/2529726.
[86]  Silva Matos, D.M.; Freckleton, R.P.; Watkinson, A.R. The role of density dependence in the population dynamics of a tropical palm. Ecology 1999, 80, 2635–2650.
[87]  Sampaio, M.B.; Scariot, A. Effects of stochastic herbivory events on population maintenance of an understorey palm species (Geonoma schottiana) in riparian tropical forest. J. Trop. Ecol. 2010, 26, 151–161, doi:10.1017/S0266467409990599.
[88]  Towns, D.R. Eradications as reverse invasions: Lessons from Pacific rat (Rattus exulans) removals on New Zealand islands. Biol. Invasions 2009, 11, 1719–1733, doi:10.1007/s10530-008-9399-7.
[89]  Smith, D.G.; Shiinoki, E.K.; VanderWerf, E.A. Recovery of native species following rat eradication on Mokoli'i Island, O'ahu, Hawai'i. Pac. Sci. 2006, 60, 299–303, doi:10.1353/psc.2006.0012.
[90]  Ratsirarson, J.; Silander, J.A., Jr.; Richard, A.F. Conservation and management of a threatened Madagascar palm species, Neodypsis decaryi, Jumele. Conserv. Biol. 1996, 10, 40–52.
[91]  Whittaker, R.J.; Fernández-Palacios, J.M. Island Biogeography: Ecology, Evolution, and Conservation, 2nd ed.; Oxford University Press: New York, NY, USA, 2007.
[92]  Irvine, I. Late-Pliocene-Quaternary Biostratigraphy and Climatic Changes in DSDP 208, Lord Howe island Rise. Bull. Aust. Soc. Explor. Geophys. 1978, 9, 146–148, doi:10.1071/EG978146.
[93]  Bijlsma, R.; Loeschcke, V. Environmental stress, adaptation and evolution: An overview. J. Evol. Biol. 2005, 18, 744–749.
[94]  Billotte, N.; Marseillac, N.; Brottier, P.; Noyer, J.L.; Jacquemoud-Collet, J.P.; Moreau, C.; Couvreur, T.; Chevallier, M.H.; Pintaud, J.C.; Risterucci, A.M. Nuclear microsatellite markers for the date palm (Phoenix dactylifera L.): Characterization and utility across the genus Phoenix and in other palm genera. Mol. Ecol. Notes 2004, 4, 256–258, doi:10.1111/j.1471-8286.2004.00634.x.
[95]  Billotte, N.; Risterucci, A.M.; Barcelos, E.; Noyer, J.L.; Amblard, P.; Baurens, F.C. Development, characterisation, and across-taxa utility of oil palm (Elaeis guineensis Jacq.) microsatellite markers. Genome 2001, 44, 413–425.
[96]  Gaiotto, F.A.; Brondani, R.P.V.; Grattapaglia, D. Microsatellite markers for heart of palm-Euterpe edulis and E. oleracea Mart. (Arecaceae). Mol. Ecol. Notes 2001, 1, 86–88, doi:10.1046/j.1471-8278.2001.00036.x.
[97]  Montufar, R.; Mariac, C.; Pham, J.L.; Pintaud, J.C. Isolation of 23 polymorphic microsatellite loci in the Neotropical palm Oenocarpus bataua Martius (Arecaceae). Mol. Ecol. Notes 2007, 7, 75–78.
[98]  Shimizu, M.; Kosaka, N.; Shimada, T.; Nagahata, T.; Iwasaki, H.; Nagai, H.; Shiba, T.; Emi, M. Universal fluorescent labeling (UFL) method for automated microsatellite analysis. DNA Res. 2002, 9, 173–178.
[99]  Peakall, R.; Smouse, P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295.
[100]  Frankham, R. Conservation genetics. Annu. Rev. Genet. 1995, 29, 305–327, doi:10.1146/annurev.ge.29.120195.001513.
[101]  Wright, S. The Interpretation of Population Structure by F-Statistics with Special Regard to Systems of Mating. Evolution 1965, 19, 395–420, doi:10.2307/2406450.
[102]  Peakall, R.; Ruibal, M.; Lindenmayer, D.B. Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evolution 2003, 57, 1182–1195.
[103]  Ak?akaya, H. Population viability analyses with demographically and spatially structured models. Ecol. Bull. 2000, 48, 23–38.
[104]  Ak?akaya, H.; Atwood, J.L. A habitat-based metapopulation model of the California Gnatcatcher. Conserv. Biol. 1997, 11, 422–434.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133