We present a new perspective for the role of Termitomyces fungi in the mutualism with fungus-growing termites. According to the predominant view, this mutualism is as an example of agriculture with termites as farmers of a domesticated fungus crop, which is used for degradation of plant-material and production of fungal biomass. However, a detailed study of the literature indicates that the termites might as well be envisioned as domesticates of the fungus. According to the “ruminant hypothesis” proposed here, termite workers, by consuming asexual fruiting bodies not only harvest asexual spores, but also lignocellulolytic enzymes, which they mix with foraged plant material and enzymes of termite and possibly bacterial origin. This mixture is the building material of the fungus garden and facilitates efficient degradation of plant material. The fungus garden thus functions as an external rumen for termites and primarily the fungi themselves benefit from their own, and gut-derived, lignocellulolytic enzymes, using the termites to efficiently mix these with their growth substrate. Only secondarily the termites benefit, when they consume the degraded, nitrogen-enriched plant-fungus mixture a second time. We propose that the details of substrate use, and the degree of complementarity and redundancy among enzymes in food processing, determine selection of horizontally transmitted fungal symbionts at the start of a colony: by testing spores on a specific, mechanically and enzymatically pre-treated growth substrate, the termite host has the opportunity to select specific fungal symbionts. Potentially, the gut-microbiota thus influence host-fungus specificity, and the selection of specific fungal strains at the start of a new colony. We argue that we need to expand the current bipartite insect-biased view of the mutualism of fungus-growing termites and include the possible role of bacteria and the benefit for the fungi to fully understand the division of labor among partners in substrate degradation.
References
[1]
Watson, R.A.; Pollack, J.B. How Symbiosis Can Guide Evolutio. In Proceedings of the 5th European Conference on Advances in Artificial Life (ECAL ’99), Lausanne, Switzerland, 15 September 1999; pp. 29–38.
[2]
Margulis, L. Biodiversity: Molecular biological domains, symbiosis and kingdom origins. Biosystems 1992, 27, 39–51.
[3]
Humphreys, C.P.; Franks, P.J.; Rees, M.; Bidartondo, M.I.; Leake, J.R.; Beerling, D.J. Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat. Commun. 2010, 1, 103.
[4]
Groombridge, B. Global Biodiversity: Status of the Earth’s Living resources; Springer: Berlin, Heidelberg, Germany, 1992; Volume 1992.
[5]
Erwin, T. The Biodiversity Question: How Many Species of Terrestrial Arthropods Are There? In Forest Canopies; Lowman, M.D., Rinker, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 259–269.
[6]
Gullan, P.; Cranston, P. The Insects: An Outline of Entomology, 4th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2010.
[7]
Baumann, P. Biology of Bacteriocyte-Associated Endosymbionts of Plant Sap-Sucking Insects. In Annual Review of Microbiology; Annual Reviews: Palo Alto, CA, USA, 2005; Volume 59, pp. 155–189.
[8]
Feldhaar, H.; Gross, R. Insects as hosts for mutualistic bacteria. Int. J. Med. Microbiol. 2009, 299, 1–8.
[9]
Douglas, A.E. Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 1998, 43, 17–37.
[10]
Shigenobu, S.; Wilson, A. Genomic revelations of a mutualism: The pea aphid and its obligate bacterial symbiont. Cell. Mol. Life Sci. 2011, 68, 1297–1309.
[11]
Gibson, C.M.; Hunter, M.S. Extraordinarily widespread and fantastically complex: Comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol. Lett. 2010, 13, 223–234.
Aanen, D.K.; Eggleton, P.; Rouland-Lefevre, C.; Guldberg-Froslev, T.; Rosendahl, S.; Boomsma, J.J. the evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc. Natl. Acad. Sci. USA 2002, 99, 14887–14892.
[14]
Mueller, U.G.; Schultz, T.R.; Cameron, R.C.; Adams, R.M.M.; Malloch, D. The origin of the attine ant-fungus mutualism. Q. Rev. Biol. 2001, 76, 169–197.
[15]
Farrell, B.D.; Sequeira, A.S.; O’Meara, B.C.; Normark, B.B.; Chung, J.H.; Jordal, B.H. The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 2009, 55, 2011–2027.
[16]
Aanen, D.K.; Eggleton, P. Fungus-growing termites originated in African rain forest. Curr. Biol. 2005, 15, 851–855.
[17]
Nobre, T.; Koné, N.A.; Konaté, S.; Linsenmair, K.E.; Aanen, D.K. Dating the fungus-growing termites’ mutualism shows a mixture between ancient codiversification and recent symbiont dispersal across divergent hosts. Mol. Ecol. 2011, 20, 2619–2627.
[18]
Jones, D.T.; Eggleton, P.; Bignell, D.E.; Roisin, Y.; Lo, N. Global Biogeography of Termites: A Compilation of Sources. In Biology of Termites: A Modern Synthesis; Springer: Amsterdam, The Netherlands, 2011; pp. 477–498.
[19]
Wood, T.G.; Sands, W.A. The Role of Termites in Ecosystems. In Production Ecology of Ants and Termites; Brian, M.V., Ed.; Cambridge Univ. Press: Cambridge, UK, 1978; pp. 245–292.
[20]
Buxton, R.D. Changes in the composition and activities of termite communities in relation to changing rainfall. Oecologia 1981, 51, 371–378.
[21]
Wilson, E. The Insect Societies; Belknap Press of Harvard University Press: Cambridge, MA, USA, 1971.
[22]
Darlington, J. Nutrition and Evolution in Fungus-Growing Termites. In Nourishment and Evolution in Insect Societies; Hunt, J.H., Nalepa, C.A., Eds.; Westview Press: Boulder, CO, USA, 1994; pp. 105–130.
[23]
Leuthold, R.H.; Badertscher, S.; Imboden, H. The inoculation of newly formed fungus comb with Termitomyces in Macrotermes colonies (Isoptera, Macrotermitinae). Insectes Sociaux 1989, 36, 328–338, doi:10.1007/BF02224884.
[24]
Aanen, D.K. As you reap, so shall you sow: Coupling of inoculating and harvesting stabilizes the mutualism between termites and fungi. Biol. Lett. 2006, 2, 209–212.
[25]
Korb, J.; Aanen, D.K. The evolution of uniparental transmission of fungal symbionts in fungus-growing termites (Macrotermitinae). Behav. Ecol. Sociobiol. 2003, 53, 65–71.
[26]
Grassé, P.-P.; Noirot, C. La fondation de nouvelles sociétés par Bellicositermes natalensis Hav. Insectes Sociaux 1955, 2, 213–220, doi:10.1007/BF02224382.
[27]
Johnson, R. Colony development and establishment of the fungus comb in Microtermes sp. nr. usambaricus (Sj?stedt) (Isoptera: Macrotermitinae) from Nigeria. Insectes Sociaux 1981, 28, 3–12, doi:10.1007/BF02223617.
[28]
Johnson, R.A.; Thomas, R.J.; Wood, T.G.; Swift, M.J. The inoculation of the fungus comb in newly founded colonies of some species of the Macrotermitinae (Isoptera) from Nigeria. J. Nat. Hist. 1981, 15, 751–756.
[29]
Nobre, T.; Fernandes, C.; Boomsma, J.J.; Korb, J.; Aanen, D.K. Farming termites determine the genetic population structure of Termitomyces fungal symbionts. Mol. Ecol. 2011, 20, 2023–2033, doi:10.1111/j.1365-294X.2011.05064.x.
[30]
Aanen, D.K.; de Fine Licht, H.H.; Debets, A.J.M.; Kerstes, N.A.G.; Hoekstra, R.F.; Boomsma, J.J. High symbiont relatedness stabilizes mutualistic cooperation in fungus-growing termites. Science 2009, 326, 1103–1106.
[31]
Rouland-Lefevre, C. Symbiosis with Fungi. In Termites: Evolution, Sociality, Symbioses, Ecology; Abe, T., Bignell, D.E., Higashi, M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 289–306.
[32]
Rouland-Lefevre, C.; Diouf, M.N.; Brauman, A.; Neyra, M. Phylogenetic relationships in Termitomyces (family Agaricaceae) based on the nucleoticle sequence of ITS: A first approach to elucidate the evolutionary history of the symbiosis between fungus-growing termites and their fungi. Mol. Phylogenet. Evol. 2002, 22, 423–429.
[33]
Aanen, D.K.; Ros, V.; de Fine Licht, H.; Mitchell, J.; de Beer, Z.W.; Slippers, B.; Rouland-LeFevre, C.; Boomsma, J. Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa. BMC Evol. Biol. 2007, 7, doi:10.1186/1471-2148-7-115.
[34]
Katoh, H.; Miura, T.; Maekawa, K.; Shinzato, N.; Matsumoto, T. Genetic variation of symbiotic fungi cultivated by the macrotermitine termite Odontotermes formosanus (Isoptera: Termitidae) in the Ryukyu Archipelago. Mol. Ecol. 2002, 11, 1565–1572, doi:10.1046/j.1365-294X.2002.01535.x.
[35]
Nobre, T.; Eggleton, P.; Aanen, D.K. Vertical transmission as the key to the colonization of Madagascar by fungus-growing termites? Proc. R. Soc. B Biol. Sci. 2010, 277, 359–365, doi:10.1098/rspb.2009.1373.
[36]
De Fine Licht, H.H.; Boomsma, J.J.; Aanen, D.K. Presumptive horizontal symbiont transmission in the fungus-growing termite Macrotermes natalensis. Mol. Ecol. 2006, 15, 3131–3138, doi:10.1111/j.1365-294X.2006.03008.x.
[37]
Sun, Y.; Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 2002, 83, 1–11.
[38]
Breznak, J.A.; Brune, A. Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol. 1994, 39, 453–487.
[39]
Bignell, D.E. Introduction to Symbiosi. In Termites: Evolution, Sociality, Symbioses, Ecology; Abe, T., Bignell, D.E., Higashi, M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 189–208.
[40]
Rouland-Lefèvre, C.; Bignell, D. Cultivation of Symbiotic Fungi by Termites of the Subfamily Macrotermitinae. In Symbiosis; Seckbach, J., Ed.; Springer: Amsterdam, The Netherlands, 2004; volume 4, pp. 731–756.
[41]
Veivers, P.C.; Mühlemann, R.; Slaytor, M.; Leuthold, R.H.; Bignell, D.E. Digestion, diet and polyethism in two fungus-growing termites: Macrotermes subhyalinus Rambur and M. michaelseni Sj?stedt. J. Insect Physiol. 1991, 37, 675–682, doi:10.1016/0022-1910(91)90044-Z.
[42]
Wood, T.G.; Thomas, R.J. The Mutualistic Association between Macrotermitinae and Termitomyces. In Insect—Fungus Interactions; Wilding, N., Collins, N.M., Hammond, P.M., Webber, J.F., Eds.; Academic Press: London, UK, 1989; pp. 113–128.
[43]
Grassé, P.-P.; Noirot, C. Le meule des termites champignonnistes et sa signification symbiotique. Ann. Sci. Nat. Zool. Biol. Anim. 1958, 11, 113–128.
[44]
Martin, M.M.; Martin, J.S. Cellulose digestion in the midgut of the fungus-growing termite Macrotermes natalensis: The role of acquired digestive enzymes. Science 1978, 199, 1453–1455.
[45]
Rouland-Lefevre, C.; Lenoir, F.; Lepage, M. The role of the symbiotic fungus in the digestive metabolism of several species of fungus-growing termites. Comp. Biochem. Physiol. 1991, 99A, 657–663.
[46]
Bignell, D.E.; Eggleton, P. Termites in Ecosystems. In Termites: Evolution, Sociality, Symbioses, Ecology; Abe, T., Bignell, D.E., Higashi, M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 363–387.
[47]
Hyodo, F.; Tayasu, I.; Inoue, T.; Azuma, J.I.; Kudo, T.; Abe, T. Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Funct. Ecol. 2003, 17, 186–193.
[48]
Hyodo, F.; Inoue, T.; Azuma, J.I.; Tayasu, I.; Abe, T. Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera; Macrotermitinae). Soil Biol. Biochem. 2000, 32, 653–658, doi:10.1016/S0038-0717(99)00192-3.
[49]
Rohrmann, G. The origin, structure, and nutritional importance of the comb in two species of Macrotermitinae. Pedobiologia 1978, 18, 89–98.
[50]
Abo-Khatwa, N. Cellulase of fungus-growing termites: A new hypothesis on its origin. Cell. Mol. Life Sci. 1978, 34, 559–560.
[51]
Rouland, C.; Civas, A.; Renoux, J.; Petek, F. Purification and properties of cellulases from the termite Macrotermes mulleri (Termitidae, Macrotermitinae) and its symbiotic fungus Termitomyces sp. Comp. Biochem. Physiol. Part B Biochem. 1988, 91, 449–458, doi:10.1016/0305-0491(88)90004-1.
[52]
Ikhouane, A.; Rouland-Lefevre, C. In Etude de la biodégradation, in vivo et in vitro, de polymères glucidiques par trois champignons du genre Termitomyces. Actes Colloques Insectes Sociaux 1996, 10, 101–109.
[53]
Matoub, M.; Rouland, C. Purification and properties of the xylanases from the termite Macrotermes bellicosus and its symbiotic fungus Termitomyces sp. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1995, 112, 629–635, doi:10.1016/0305-0491(95)00103-4.
[54]
Faulet, B.M.; Niamke, S.; Gonnety, J.T.; Kouame, L.P. Purification and biochemical properties of a new thermostable xylanase from symbiotic fungus, Termitomyces sp. Afr. J. Biotechnol. 2006, 5, 273–282.
[55]
Deng, T.F.; Chen, C.R.; Cheng, M.L.; Pan, C.Y.; Zhou, Y.; Mo, J.C. Differences in cellulase activity among different castes of Odontotermes formosanus (Isoptera : Termitidae) and the symbiotic fungus Termitomyces albuminosus. Sociobiology 2008, 51, 697–704.
[56]
Yang, T.; Mo, J.C.; Cheng, J. Purification and some properties of cellulase from Odontotermes formosanus (Isoptera: Termitidae). Entomol. Sin. 2004, 11, 1–10.
[57]
Sengupta, S.; Ghosh, A.K.; Sengupta, S. Purification and characterisation of a β-glucosidase (cellobiase) from a mushroom Termitomyces clypeatus. Biochim. Biophys. Acta (BBA) Protein Struct. Mol. Enzymol. 1991, 1076, 215–220, doi:10.1016/0167-4838(91)90269-6.
[58]
Ghosh, A.K.; Banerjee, P.C.; Sengupta, S. Purification and properties of xylan hydrolase from mushroom Termitomyces clypeatus. Biochim. Biophys. Acta (BBA) Enzymol. 1980, 612, 143–152.
[59]
Sinha, N.; Sengupta, S. Simultaneous production of α-arabinofuranosidase and xylanase by Termitomyces clypeatus. World J. Microbiol. Biotechnol. 1995, 11, 359–360, doi:10.1007/BF00367122.
[60]
Bose, S.; Mazumder, S.; Mukherjee, M. Laccase production by the white-rot fungus Termitomyces clypeatus. J. Basic Microbiol. 2007, 47, 127–131, doi:10.1002/jobm.200610206.
[61]
Bignell, D.E.; Slaytor, M.; Veivers, P.C.; Muhlemann, R.; Leuthold, R.H. Functions of symbiotic fungus gardens in higher termites of the genus Macrotermes: Evidence against the acquired enzyme hypothesis. Acta Microbiol. Immunol. Hung. 1994, 41, 391–401.
[62]
Slaytor, M. Cellulose digestion in termites and cockroaches: What role do symbionts play? Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 1992, 103, 775–784.
[63]
Badertscher, S.; Gerber, C.; Leuthold, R.H. Polyethism in food supply and processing in termite colonies of Macrotermes subhyalinus (Isoptera). Behav. Ecol. Sociobiol. 1983, 12, 115–119, doi:10.1007/BF00343201.
[64]
Traniello, J.F.A.; Leuthold, R.H. The Behavior and Ecology of Foraging in Termites. In Termites: Evolution, Sociality, Symbioses, Ecology; Abe, T., Bignell, D.E., Higashi, M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 141–168.
[65]
Swift, M.; Heal, O.; Anderson, M. Decomposition in Terrestrial Ecosystems; Blackwell Scientific: Oxford, UK, 1979; p. 372.
[66]
Collins, N. The Utilization of Nitrogen Resources by Termites (Isoptera). In Nitrogen as an Ecological Factor; Lee, J., McNeill, S., Rorison, I., Eds.; Blackwell Scientific Publications: Oxford, UK, 1983; pp. 381–412.
[67]
Martin, M.M. Acquired Enzymes in the Fungus-Growing Termite Macrotermes natalensis. In Invertebrate Microbial Interactions. Ingested Fungal Enzymes in Arthropod Biology; Comstock Publishing Associates: Ithaca, NY, USA, 1987; pp. 17–36.
[68]
Martin, M.M.; Martin, J.S. The distribution and origins of the cellulolytic enzymes of the higher termite, Macrotermes natalensis. Physiol. Zool. 1979, 52, 11–21.
[69]
Bignell, D.E. Morphology, Physiology, Biochemistry and Functional Design of the Termite Gut: An Evolutionary Wonderland. In Biology of Termites: A Modern Synthesis; Bignell, D.E., Roisin, Y., Lo, N., Eds.; Springer: Amsterdam, The Netherlands, 2011; pp. 375–412.
[70]
Misra, J.; Ranganathan, V. Digestion of cellulose by the mound building termite, Termes (Cyclotermes) obesus (Rambur). Proc. Plant Sci. 1954, 39, 100–113.
[71]
Pasti, M.B.; Belli, M.L. Cellulolytic activity of actinomycetes isolated from termites (Termitidae) gut. FEMS Microbiol. Lett. 1985, 26, 107–112.
[72]
Paul, J.; Saxena, S.; Varma, A. Ultrastructural studies of the termite (Odontotermes obesus) gut microflora and its cellulolytic properties. World J. Microbiol. Biotechnol. 1993, 9, 108–112, doi:10.1007/BF00656529.
[73]
Varm, A.; Bala Krishna, K.; Jaishree, P.; Shailendra, S.; Helmut, K. Lignocellulose degradation by microorganisms from termite hills and termite guts: A survey on the present state of art. FEMS Microbiol. Rev. 1994, 15, 9–28.
[74]
Yara, K.; Jahan, K.; Hayashi, H. In situ morphology of the gut microbiota of the fungus-growing termite Odontotermes formosanus (Termitidae: Macrotermitidae). Sociobiology 1989, 15, 2247–2260.
[75]
Anklinmuhlemann, R.; Bignell, D.E.; Veivers, P.C.; Leuthold, R.H.; Slaytor, M. Morphological, microbiological and biochemical studies of the gut flora in the fungus-growing termite Macrotermes subhyalinus. J. Insect Physiol. 1995, 41, 929–940, doi:10.1016/0022-1910(95)00062-Y.
[76]
Shah, H.N.; Gharbia, S.E. Ecophysiology and taxonomy of bacteroides and related taxa. Clin. Infect. Dis. 1993, 16, S160–S167.
[77]
Ohkuma, M.; Noda, S.; Hongoh, Y.; Kudo, T. Diverse bacteria related to the bacteroides subgroup of the CFB phylum within the gut symbiotic communities of various termites. Biosci. Biotechnol. Biochem. 2002, 66, 78–84.
[78]
Hongoh, Y.; Ekpornprasit, L.; Inoue, T.; Moriya, S.; Trakulnaleamsai, S.; Ohkuma, M.; Noparatnaraporn, N.; Kudo, T. Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Mol. Ecol. 2006, 15, 505–516.
[79]
Mackenzie, L.M.; Muigai, A.T.; Osir, E.O.; Lwande, W.; Keller, M.; Toledo, G.; Boga, H.I. Bacterial diversity in the intestinal tract of the fungus-cultivating termite Macrotermes michaelseni (Sj?stedt). Afr. J. Biotechnol. 2007, 6.
[80]
Liu, N.; Yan, X.; Zhang, M.; Xie, L.; Wang, Q.; Huang, Y.; Zhou, X.; Wang, S.; Zhou, Z. Microbiome of fungus-growing termites: A new reservoir for lignocellulase genes. Appl. Environ. Microbiol. 2011, 77, 48–56.
[81]
Long, Y.-H.; Xie, L.; Liu, N.; Yan, X.; Li, M.-H.; Fan, M.-Z.; Wang, Q. Comparison of gut-associated and nest-associated microbial communities of a fungus-growing termite Odontotermes yunnanensis. Insect Sci. 2010, 17, 265–276, doi:10.1111/j.1744-7917.2010.01327.x.
[82]
Brauman, A.; Dore, J.; Eggleton, P.; Bignell, D.; Breznak, J.A.; Kane, M.D. Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol. Ecol. 2001, 35, 27–36.
[83]
Ohkuma, M. Termite symbiotic systems: Efficient bio-recycling of lignocellulose. Appl. Microbiol. Biotechnol. 2003, 61, 1–9.
[84]
Scharf, M.E.; Boucias, D.G. Potential of termite-based biomass pre-treatment strategies for use in bioethanol production. Insect Sci. 2010, 17, 166–174.
[85]
Bathellier, J. Contribution à l’ etude systématique et biologique de termites de l’Indo-Chine. Faune Colonies Franc. 1927, 1, 125–365.
[86]
De Fine Licht, H.H.; Andersen, A.; Aanen, D.K. Termitomyces sp associated with the termite Macrotermes natalensis has a heterothallic mating system and multinucleate cells. Mycol. Res. 2005, 109, 314–318, doi:10.1017/S0953756204001844.
[87]
Heim, R. Termites et Champignons; Société nouvelle de éditions Boubée: Paris, France, 1977.
[88]
Thomas, R.J. Distribution of Termitomyces Heim and other fungi in the nests and major workers of several nigerian Macrotermitinae. Soil Biol. Biochem. 1987, 19, 335–341, doi:10.1016/0038-0717(87)90019-8.