全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Genes  2012 

A Model of Evolution of Development Based on Germline Penetration of New “No-Junk” DNA

DOI: 10.3390/genes3030492

Keywords: transposable elements, embryonic development, evo-devo

Full-Text   Cite this paper   Add to My Lib

Abstract:

There is a mounting body of evidence that somatic transposition may be involved in normal development of multicellular organisms and in pathology, especially cancer. Epigenetic Tracking (ET) is an abstract model of multicellular development, able to generate complex 3-dimensional structures. Its aim is not to model the development of a particular organism nor to merely summarise mainstream knowledge on genetic regulation of development. Rather, the goal of ET is to provide a theoretical framework to test new postulated genetic mechanisms, not fully established yet in mainstream biology. The first proposal is that development is orchestrated through a subset of cells which we call driver cells. In these cells, the cellular state determines a specific pattern of gene activation which leads to the occurrence of developmental events. The second proposal is that evolution of development is affected by somatic transposition events. We postulate that when the genome of a driver cell does not specify what developmental event should be undertaken when the cell is in a particular cellular state, somatic transposition events can reshape the genome, build new regulatory regions, and lead to a new pattern of gene activation in the cell. Our third hypothesis, not supported yet by direct evidence, but consistent with some experimental observations, is that these new “no-junk” sequences—regulatory regions created by transposable elements at new positions in the genome—can exit the cell and enter the germline, to be incorporated in the genome of the progeny. We call this mechanism germline penetration. This process allows heritable incorporation of novel developmental events in the developmental trajectory. In this paper we will present the model and link these three postulated mechanisms to biological observations.

References

[1]  Lander, E.; Linton, L.; Birren, B.; Nusbaum, C.; Zody, M.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921.
[2]  Brouha, B.; Schustak, J.; Badge, R.; Lutz-Prigge, S.; Farley, A.; Moran, J.V.; Kazazian, H. Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl. Acad. Sci. USA 2003, 100, 5280–5285.
[3]  Casavant, N.; Scott, L.; Cantrell, M.; Wiggins, L.; Baker, R. The end of the LINE?: Lack of recent L1 activity in a group of South American rodents. Genetics 2000, 154, 1809–1817.
[4]  Cantrell, M.; Scott, L.; Brown, C.; Martinez, A.; Wichman, H. Loss of LINE-1 activity in the megabats. Genetics 2008, 178, 393–404, doi:10.1534/genetics.107.080275.
[5]  Spadafora, C. A reverse transcriptase-dependent mechanism plays central roles in fundamental biological processes. Syst. Biol. Reprod. Med. 2008, 54, 11–21, doi:10.1080/19396360701876815.
[6]  Coufal, N.; Garcia-Perez, J.; Peng, G.; Yeo, G.; Mu, Y.; Lovci, M.; Morell, M.; O’Shea, K.; Moran, J.; Gage, F. L1 retrotransposition in human neural progenitor cells. Nature 2009, 460, 1127–1131.
[7]  Baillie, J.; Barnett, M.; Upton, K.; Gerhardt, D.; Richmond, T.; de Sapio, F.; Brennan, P.; Rizzu, P.; Smith, S.; Fell, M.; et al. Somatic retrotransposition alters the genetic landscape of the human brain. Nature 2011, 479, 534–537.
[8]  Schulz, W. L1 retrotransposons in human cancers. J. Biomed. Biotechnol. 2006, 2006, 1–12, doi:10.1155/JBB/2006/83672.
[9]  Cordaux, R.; Batzer, M. The impact of retrotransposons on human genome evolution. Nat. Genet. 2009, 10, 691–703.
[10]  Fontana, A. Epigenetic Tracking, a Method to Generate Arbitrary Shapes by Using Evo-Devo Techniques. In Proceedings of the 8th International Conference on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, Falmer, UK, 30–31 July 2008.
[11]  Fontana, A. Epigenetic Tracking: Biological Implications. In Proceedings of 10th European Conference on Artificial Life (ECAL 2009), Budapest, Hungary, 13–16 September 2009; Kampis, G., Szathmary, E., Eds.; Springer Verlag: Berlin, Germany, 2009; Volume 5777 of LNCS, pp. 10–17.
[12]  Fontana, A. An Artificial Life Model for Carcinogenesis. In Artificial Life XII, Proceedings of the 12th International Conference on the Synthesis and Simulation of Living Systems, Odense, Denmark, 19–23 August 2010; Fellermann, H., Dorr, M., Hanczyc, M., Laursen, L., Maurer, S., Merkle, D., Monnard, P., Stoy, K., Rasmussen, S., Eds.; MIT Press: Cambridge, MA, USA, 2010; pp. 101–108.
[13]  Fontana, A. Devo Co-Evolution of Shape and Metabolism for an Artificial Organ. In Artificial Life XII, Proceedings of the 12th International Conference on the Synthesis and Simulation of Living Systems, Odense, Denmark, 19–23 August 2010; Fellermann, H., Dorr, M., Hanczyc, M., Laursen, L., Maurer, S., Merkle, D., Monnard, P., Stoy, K., Rasmussen, S., Eds.; MIT Press: Cambridge, MA, USA, 2010; pp. 16–23.
[14]  Fontana, A. A hypothesis on the role of transposons. Biosystems 2010, 101, 187–193, doi:10.1016/j.biosystems.2010.07.002.
[15]  Eggenberger-Hotz, P. Evolving Morphologies of Simulated 3D Organisms Based on Differential Gene Expression. In Proceedings of the 4th International Conference on the Simulation and Synthesis of Living Systems (ALife IV), Boston, MA, USA, 6–8 July 2004; Brooks, R., Maes, P., Eds.; MIT Press: Cambridge, MA, USA., 1997; pp. 205–213.
[16]  Joachimczak, M.; Wrobel, B. Evo-Devo in Silico: A Model of a Gene Network Regulating Multicellular Development in 3D Space with Artificial Physics. In Proceedings of the 11th International Conference on the Simulation and Synthesis of Living Systems (ALife XI), Winchester, UK, 5–8 August 2008; Bullock, S., Noble, J., Watson, R., Bedau, M., Eds.; MIT Press: Cambridge, MA, USA, 2008; pp. 297–304.
[17]  Stern, C.; Charit, J.; Deschamps, J.; Duboule, D.; Durston, A.; Kmita, M.; Nicolas, J.; Palmeirim, I.; Smith, J.; Wolpert, L. Head-tail patterning of the vertebrate embryo: One, two or many unresolved problems? Int. J. Dev. Biol. 2006, 50, 3–15, doi:10.1387/ijdb.052095cs.
[18]  De Robertis, E.M. Spemann’s organizer and self-regulation in amphibian embryos. Nat. Rev. Mol. Cell Biol. 2006, 7, 296–302, doi:10.1038/nrm1855.
[19]  Rebollo, R.; Horard, B.; Hubert, B.; Vieira, C. Jumping genes and epigenetics: Towards new species. Gene 2010, 454, 1–7, doi:10.1016/j.gene.2010.01.003.
[20]  Muotri, A.R.; Marchetto, M.C.N.; Coufal, N.G.; Gage, F.H. The necessary junk: New functions for transposable elements. Hum. Mol. Genet. 2007, 16, R159–R167, doi:10.1093/hmg/ddm196.
[21]  Oliver, K.R.; Greene, W.K. Transposable elements: Powerful facilitators of evolution. BioEssays 2010, 31, 703–714.
[22]  Fleischhacker, M.; Schmidt, B. Circulating nucleic acids (CNAs) and cancer—A survey. Biochim. Biophys. Acta 2007, 1775, 181–232.
[23]  Schwarzenbach, H.; Hoon, D.; PantelSchulz, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 2011, 11, 426–437, doi:10.1038/nrc3066.
[24]  Garca-Olmo, D.; Ruiz-Piqueras, R.; Garca-Olmo, D. Circulating nucleic acids in plasma and serum (CNAPS) and its relation to stem cells and cancer metastasis: State of the issue. Histol Histopathol. 2004, 19, 575–583.
[25]  Spadafora, C. Sperm-mediated €reverse€ gene transfer: A role of reverse transcriptase in the generation of new genetic information. Hum. Reprod. 2008, 4, 735–740, doi:10.1093/humrep/dem425.
[26]  Singer, T.; McConnell, M.J.; Marchetto, M.C.; Coufal, N.G.; Gage, F.H. LINE-1 retrotransposons: Mediators of somatic variation in neuronal genomes? Trends Neurosci. 2010, 33, 345–354, doi:10.1016/j.tins.2010.04.001.
[27]  Vogel, G. Retrotransposons. Do jumping genes spawn diversity? Science 2011, 332, 300–301, doi:10.1126/science.332.6027.300.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133