Environment is recognized as a huge reservoir for bacterial species and a source of human pathogens. Some environmental bacteria have an extraordinary range of activities that include promotion of plant growth or disease, breakdown of pollutants, production of original biomolecules, but also multidrug resistance and human pathogenicity. The versatility of bacterial life-style involves adaptation to various niches. Adaptation to both open environment and human specific niches is a major challenge that involves intermediate organisms allowing pre-adaptation to humans. The aim of this review is to analyze genomic features of environmental bacteria in order to explain their adaptation to human beings. The genera Pseudomonas, Aeromonas and Ochrobactrum provide valuable examples of opportunistic behavior associated to particular genomic structure and evolution. Particularly, we performed original genomic comparisons among aeromonads and between the strictly intracellular pathogens Brucella spp. and the mild opportunistic pathogens Ochrobactrum spp. We conclude that the adaptation to human could coincide with a speciation in action revealed by modifications in both genomic and population structures. This adaptation-driven speciation could be a major mechanism for the emergence of true pathogens besides the acquisition of specialized virulence factors.
References
[1]
Curtis, L.T. Prevention of hospital-acquired infections: Review of non-pharmacological interventions. J. Hosp. Infect. 2008, 69, 204–219, doi:10.1016/j.jhin.2008.03.018. 18513830
[2]
Guss, A.M.; Roeselers, G.; Newton, I.L.; Young, C.R.; Klepac-Ceraj, V.; Lory, S.; Cavanaugh, C.M. Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis. ISME J. 2011, 5, 20–29, doi:10.1038/ismej.2010.88. 20631810
[3]
Klevens, R.M.; Edwards, J.R.; Richards, C.L., Jr.; Horan, T.C.; Gaynes, R.P.; Pollock, D.A.; Cardo, D.M. Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep. 2007, 122, 160–166. 17357358
[4]
Lynch, P.; Pittet, D.; Borg, M.A.; Mehtar, S. Infection control in countries with limited resources. J. Hosp. Infect. 2007, 65, S148–S150, doi:10.1016/S0195-6701(07)60033-4.
[5]
Bleves, S.; Viarre, V.; Salacha, R.; Michel, G.P.; Filloux, A.; Voulhoux, R. Protein secretion systems in Pseudomonas aeruginosa: A wealth of pathogenic weapons. Int. J. Med. Microbiol. 2010, 300, 534–543, doi:10.1016/j.ijmm.2010.08.005.
[6]
Bengis, R.G.; Leighton, F.A.; Fischer, J.R.; Artois, M.; Morner, T.; Tate, C.M. The role of wildlife in emerging and re-emerging zoonoses. Rev. Sci. Tech. 2004, 23, 497–511. 15702716
[7]
Cutler, S.J.; Fooks, A.R.; van der Poel, W.H. Public health threat of new, reemerging, and neglected zoonoses in the industrialized world. Emerg Infect. Dis. 2010, 16, 1–7, doi:10.3201/eid1601.081467. 20031035
[8]
Pearce-Duvet, J.M. The origin of human pathogens: Evaluating the role of agriculture and domestic animals in the evolution of human disease. Biol. Rev. Camb Philos. Soc. 2006, 81, 369–382, doi:10.1017/S1464793106007020. 16672105
[9]
Mitchell, J. Streptococcus mitis: Walking the line between commensalism and pathogenesis. Mol. Oral Microbiol. 2011, 26, 89–98, doi:10.1111/j.2041-1014.2010.00601.x.
Sobsey, M.D.; Pillai, S.D. Where future emerging pathogens will come from and what approaches can be used to find them, besides VFARs. J. Water Health 2009, 7, S75–S93, doi:10.2166/wh.2009.096. 19717933
Moliner, C.; Raoult, D.; Fournier, P.E. Evidence of horizontal gene transfer between amoeba and bacteria. Clin. Microbiol. Infect. 2009, 15, S178–S180, doi:10.1111/j.1469-0691.2008.02216.x.
[14]
Waterfield, N.R.; Wren, B.W.; Ffrench-Constant, R.H. Invertebrates as a source of emerging human pathogens. Nat. Rev. Microbiol. 2004, 2, 833–841, doi:10.1038/nrmicro1008. 15378047
[15]
Greub, G.; Raoult, D. Microorganisms resistant to free-living amoebae. Clin. Microbiol. Rev. 2004, 17, 413–433, doi:10.1128/CMR.17.2.413-433.2004. 15084508
[16]
Scully, L.R.; Bidochka, M.J. Developing insect models for the study of current and emerging human pathogens. FEMS Microbiol. Lett. 2006, 263, 1–9, doi:10.1111/j.1574-6968.2006.00388.x. 16958844
[17]
Berg, G.; Eberl, L.; Hartmann, A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ. Microbiol. 2005, 7, 1673–1685, doi:10.1111/j.1462-2920.2005.00891.x. 16232283
[18]
Aujoulat, F.; Jumas-Bilak, E.; Masnou, A.; Salle, F.; Faure, D.; Segonds, C.; Marchandin, H.; Teyssier, C. Multilocus sequence-based analysis delineates a clonal population of Agrobacterium (Rhizobium) radiobacter (Agrobacterium tumefaciens) of human origin. J. Bacteriol. 2011, 193, 2608–2618, doi:10.1128/JB.00107-11. 21398532
[19]
Vial, L.; Chapalain, A.; Groleau, M.C; Déziel, E. The various lifestyles of the Burkholderia cepacia complex species: A tribute to adaptation. Env. Microbiol. 2011, 13, 1–12, doi:10.1111/j.1462-2920.2010.02343.x.
[20]
Rezzonico, F.; Smits, T.H.; Montesinos, E.; Frey, J.E.; Duffy, B. Genotypic comparison of Pantoea agglomerans plant and clinical strains. BMC Microbiol. 2009, 9, 204, doi:10.1186/1471-2180-9-204.
[21]
Ziga, E.D.; Druley, T.; Burnham, C.A. Herbaspirillum species bacteremiabacteremia in a pediatric oncology patient. J. Clin. Microbiol. 2010, 48, 4320–4321, doi:10.1128/JCM.01479-10.
[22]
Spilker, T.; Uluer, A.Z.; Marty, F.M.; Yeh, W.W.; Levison, J.H.; Vandamme, P.; Lipuma, J.J. Recovery of Herbaspirillum species from persons with cystic fibrosis. J. Clin. Microbiol. 2008, 46, 2774–2777, doi:10.1128/JCM.00460-08. 18524958
[23]
Pedrosa, F.O.; Monteiro, R.A.; Wassem, R.; Cruz, L.M.; Ayub, R.A.; Colauto, N.B.; Fernandez, M.A.; Fungaro, M.H.; Grisard, E.C.; Hungria, M.; et al. Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet. 2011, 7, e1002064, doi:10.1371/journal.pgen.1002064. 21589895
[24]
Romano, S.; Aujoulat, F.; Jumas-Bilak, E.; Masnou, A.; Jeannot, J.L.; Falsen, E.; Marchandin, H.; Teyssier, C. Multilocus sequence typing supports the hypothesis that Ochrobactrum anthropi displays a human-associated subpopulation. BMC Microbiol. 2009, 9, 267, doi:10.1186/1471-2180-9-267.
[25]
Wu, D.Q.; Ye, J.; Ou, H.Y.; Wei, X.; Huang, X.; He, Y.W.; Xu, Y. Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18. BMC Genomics 2011, 12, 438, doi:10.1186/1471-2164-12-438. 21884571
[26]
Brooke, J.S. Stenotrophomonas maltophilia: An emerging global opportunistic pathogen. Clin. Microbiol. Rev. 2012, 25, 2–41, doi:10.1128/CMR.00019-11.
[27]
Ramos, J.L.; Gonzalez-Perez, M.M.; Caballero, A.; van Dillewijn, P. Bioremediation of polynitrated aromatic compounds: Plants and microbes put up a fight. Curr. Opin. Biotechnol. 2005, 16, 275–281, doi:10.1016/j.copbio.2005.03.010. 15961028
[28]
Barabote, R.D.; Thekkiniath, J.; Strauss, R.E.; Vediyappan, G.; Fralick, J.A.; San Francisco, M.J. Xenobiotic efflux in bacteria and fungi: A genomics update. Adv. Enzymol. Relat. Areas Mol. Biol. 2011, 77, 237–306. 21692371
Allocati, N.; Federici, L.; Masulli, M.; Di Ilio, C. Glutathione transferases in bacteria. FEBS J. 2009, 276, 58–75, doi:10.1111/j.1742-4658.2008.06743.x. 19016852
[31]
Nishino, K.; Yamaguchi, A. Role of xenobiotic transporters in bacterial drug resistance and virulence. IUBMB Life 2008, 60, 569–574, doi:10.1002/iub.90. 18481812
[32]
Piddock, L.J. Multidrug-resistance efflux pumps - not just for resistance. Nat. Rev. Microbiol. 2006, 4, 629–636, doi:10.1038/nrmicro1464. 16845433
[33]
Nishino, K.; Latifi, T.; Groisman, E.A. Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol. Microbiol. 2006, 59, 126–141, doi:10.1111/j.1365-2958.2005.04940.x.
[34]
Rowbotham, T.J. Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J. Clin. Pathol. 1980, 33, 1179–1183, doi:10.1136/jcp.33.12.1179. 7451664
[35]
Barker, J.; Brown, M.R. Trojan horses of the microbial world: Protozoa and the survival of bacterial pathogens in the environment. Microbiology 1994, 140, 1253–1259, doi:10.1099/00221287-140-6-1253. 8081490
[36]
Singer, M. Pathogen-pathogen interaction: A syndemic model of complex biosocial processes in disease. Virulence 2010, 1, 10–18, doi:10.4161/viru.1.1.9933. 21178409
[37]
Schmitz-Esser, S.; Tischler, P.; Arnold, R.; Montanaro, J.; Wagner, M.; Rattei, T.; Horn, M. The genome of the amoeba symbiont “Candidatus Amoebophilus asiaticus” reveals common mechanisms for host cell interaction among amoeba-associated bacteria. J. Bacteriol. 2010, 192, 1045–1057, doi:10.1128/JB.01379-09.
Laskowski-Arce, M.A.; Orth, K. Acanthamoeba castellanii promotes the survival of Vibrio parahaemolyticus. Appl. Environ. Microbiol. 2008, 74, 7183–7188, doi:10.1128/AEM.01332-08.
[40]
Yamada, Y.; Yukphan, P. Genera and species in acetic acid bacteria. Int. J. Food Microbiol. 2008, 125, 15–24, doi:10.1016/j.ijfoodmicro.2007.11.077. 18199517
Snyder, R.W.; Ruhe, J.; Kobrin, S.; Wasserstein, A.; Doline, C.; Nachamkin, I.; Lipschutz, J.H. Asaia bogorensis peritonitis identified by 16S ribosomal RNA sequence analysis in a patient receiving peritoneal dialysis. Am. J. Kidney Dis. 2004, 44, e15–e17, doi:10.1053/j.ajkd.2004.04.042.
[43]
Alauzet, C.; Teyssier, C.; Jumas-Bilak, E.; Gouby, A.; Chiron, R.; Rabaud, C.; Counil, F.; Lozniewski, A.; Marchandin, H. Gluconobacter as well as Asaia species, newly emerging opportunistic human pathogens among acetic acid bacteria. J. Clin. Microbiol. 2010, 48, 3935–3942, doi:10.1128/JCM.00767-10. 20826638
[44]
Nadarasah, G.; Stavrinides, J. Insects as alternative hosts for phytopathogenic bacteria. FEMS Microbiol. Rev. 2011, 35, 555–575, doi:10.1111/j.1574-6976.2011.00264.x. 21251027
[45]
Avila, F.J.; Bruton, B.D.; Fletcher, J.; Sherwood, J.L.; Pair, S.D.; Melcher, U. Polymerase chain reaction detection and phylogenetic characterization of an agent associated with yellow vine disease of cucurbits. Phytopathology 1998, 88, 428–436, doi:10.1094/PHYTO.1998.88.5.428. 18944922
[46]
Dessi, A.; Puddu, M.; Testa, M.; Marcialis, M.A.; Pintus, M.C.; Fanos, V. Serratia marcescens infections and outbreaks in neonatal intensive care units. J. Chemother 2009, 21, 493–499. 19933039
[47]
Levy, B. Infectious keratitis: What have we learned? Eye Contact Lens 2007, 33, 418–420. disussion 424-415., doi:10.1097/ICL.0b013e318157f1df.
[48]
Labbate, M.; Zhu, H.; Thung, L.; Bandara, R.; Larsen, M.R.; Willcox, M.D.; Givskov, M.; Rice, S.A.; Kjelleberg, S. Quorum-sensing regulation of adhesion in Serratia marcescens MG1 is surface dependent. J. Bacteriol. 2007, 189, 2702–2711, doi:10.1128/JB.01582-06. 17237163
[49]
Mellies, J.L.; Lawrence-Pine, E.R. Interkingdom signaling between pathogenic bacteria and Caenorhabditis elegans. Trends Microbiol. 2010, 18, 448–454, doi:10.1016/j.tim.2010.07.002.
[50]
Abby, S.; Daubin, V. Comparative genomics and the evolution of prokaryotes. Trends Microbiol. 2007, 15, 135–141, doi:10.1016/j.tim.2007.01.007. 17289390
[51]
Shapiro, J.A. Letting Escherichia coli teach me about genome engineering. Genetics 2009, 183, 1205–1214, doi:10.1534/genetics.109.110007.
[52]
Dobrindt, U.; Hacker, J. Whole genome plasticity in pathogenic bacteria. Curr. Opin. Microbiol. 2001, 4, 550–557, doi:10.1016/S1369-5274(00)00250-2. 11587932
[53]
Konstantinidis, K.T.; Tiedje, J.M. Trends between gene content and genome size in prokaryotic species with larger genomes. Proc. Natl. Acad. Sci. USA 2004, 101, 3160–3165, doi:10.1073/pnas.0308653100. 14973198
[54]
Georgiades, K.; Raoult, D. Defining pathogenic bacterial species in the genomic era. Front. Microbiol. 2010, 1, 151. 21687765
Brazilian National Genome Project Consortium. The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc. Natl. Acad. Sci. USA 2003 2003, 100, 11660–11665, doi:10.1073/pnas.1832124100.
[57]
Teyssier, C.; Marchandin, H.; Masnou, A.; Jeannot, J.L.; de Buochberg, M.S.; Jumas-Bilak, E. Pulsed-field gel electrophoresis to study the diversity of whole-genome organization in the genus Ochrobactrum. Electrophoresis 2005, 26, 2898–2907, doi:10.1002/elps.200410323.
[58]
Ogier, J.C.; Calteau, A.; Forst, S.; Goodrich-Blair, H.; Roche, D.; Rouy, Z.; Suen, G.; Zumbihl, R.; Givaudan, A.; Tailliez, P.; et al. Units of plasticity in bacterial genomes: New insight from the comparative genomics of two bacteria interacting with invertebrates, Photorhabdus and Xenorhabdus. BMC Genomics 2010, 11, 568, doi:10.1186/1471-2164-11-568. 20950463
[59]
Morales, G.; Wiehlmann, L.; Gudowius, P.; van Delden, C.; Tummler, B.; Martinez, J.L.; Rojo, F. Structure of Pseudomonas aeruginosa populations analysed by single nucleotide polymorphism and pulsed-field gel electrophoresis genotyping. J. Bacteriol. 2004, 186, 4228–4237, doi:10.1128/JB.186.13.4228-4237.2004. 15205425
[60]
Johnson, J.K.; Arduino, S.M.; Stine, O.C.; Johnson, J.A.; Harris, A.D. Multilocus sequence typing compared to pulsed-field gel electrophoresis for molecular typing of Pseudomonas aeruginosa. J. Clin. Microbiol. 2007, 45, 3707–3712, doi:10.1128/JCM.00560-07. 17881548
[61]
Boussau, B.; Karlberg, E.O.; Frank, A.C.; Legault, B.A.; Andersson, S.G. Computational inference of scenarios for alpha-proteobacterial genome evolution. Proc. Natl. Acad. Sci. USA 2004, 101, 9722–9727, doi:10.1073/pnas.0400975101. 15210995
[62]
Tamas, I.; Klasson, L.; Canback, B.; Naslund, A.K.; Eriksson, A.S.; Wernegreen, J.J.; Sandstrom, J.P.; Moran, N.A.; Andersson, S.G. 50 million years of genomic stasis in endosymbiotic bacteria. Science 2002, 296, 2376–2379, doi:10.1126/science.1071278. 12089438
[63]
Wilkinson, P.; Waterfield, N.R.; Crossman, L.; Corton, C.; Sanchez-Contreras, M.; Vlisidou, I.; Barron, A.; Bignell, A.; Clark, L.; Ormond, D.; et al. Comparative genomics of the emerging human pathogen Photorhabdus asymbiotica with the insect pathogen Photorhabdus luminescens. BMC Genomics 2009, 10, 302, doi:10.1186/1471-2164-10-302. 19583835
[64]
Gaudriault, S.; Pages, S.; Lanois, A.; Laroui, C.; Teyssier, C.; Jumas-Bilak, E.; Givaudan, A. Plastic architecture of bacterial genome revealed by comparative genomics of Photorhabdus variants. Genome Biol. 2008, 9, R117, doi:10.1186/gb-2008-9-7-r117.
[65]
Matz, C.; Moreno, A.M.; Alhede, M.; Manefield, M.; Hauser, A.R.; Givskov, M.; Kjelleberg, S. Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae. ISME J. 2008, 2, 843–852, doi:10.1038/ismej.2008.47.
[66]
Tounsi, S.; Blight, M.; Jaoua, S.; de Lima Pimenta, A. From insects to human hosts: Identification of major genomic differences between entomopathogenic strains of Photorhabdus and the emerging human pathogen Photorhabdus asymbiotica. Int. J. Med. Microbiol. 2006, 296, 521–530, doi:10.1016/j.ijmm.2006.06.004.
[67]
Heermann, R.; Fuchs, T.M. Comparative analysis of the Photorhabdus luminescens and the Yersinia enterocolitica genomes: Uncovering candidate genes involved in insect pathogenicity. BMC Genomics 2008, 9, 40, doi:10.1186/1471-2164-9-40.
[68]
Holden, M.T.; Seth-Smith, H.M.; Crossman, L.C.; Sebaihia, M.; Bentley, S.D.; Cerdeno-Tarraga, A.M.; Thomson, N.R.; Bason, N.; Quail, M.A.; Sharp, S.; et al. The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J. Bacteriol. 2009, 191, 261–277, doi:10.1128/JB.01230-08. 18931103
[69]
Mil-Homens, D.; Rocha, E.P.; Fialho, A.M. Genome-wide analysis of DNA repeats in Burkholderia cenocepacia J2315 identifies a novel adhesin-like gene unique to epidemic-associated strains of the ET-12 lineage. Microbiology 2010, 156, 1084–1096, doi:10.1099/mic.0.032623-0.
[70]
Moran, N.A.; Wernegreen, J.J. Lifestyle evolution in symbiotic bacteria: Insights from genomics. Trends Ecol. Evol. 2000, 15, 321–326, doi:10.1016/S0169-5347(00)01902-9. 10884696
[71]
Ogata, H.; Audic, S.; Renesto-Audiffren, P.; Fournier, P.E.; Barbe, V.; Samson, D.; Roux, V.; Cossart, P.; Weissenbach, J.; Claverie, J.M.; et al. Mechanisms of evolution in Rickettsia conorii and R. prowazekii.. Science 2001, 293, 2093–2098, doi:10.1126/science.1061471. 11557893
[72]
Merhej, V.; Royer-Carenzi, M.; Pontarotti, P.; Raoult, D. Massive comparative genomic analysis reveals convergent evolution of specialized bacteria. Biol. Direct 2009, 4, 13, doi:10.1186/1745-6150-4-13. 19361336
Kurland, C.G.; Andersson, S.G. Origin and evolution of the mitochondrial proteome. Microbiol. Mol. Biol. Rev. 2000, 64, 786–820, doi:10.1128/MMBR.64.4.786-820.2000. 11104819
[75]
Andersson, S.G.; Dehio, C. Rickettsia prowazekii and Bartonella henselae: Differences in the intracellular life styles revisited. Int. J. Med. Microbiol. 2000, 290, 135–141, doi:10.1016/S1438-4221(00)80081-8.
Moreno, E. Genome evolution within the alpha Proteobacteria: Why do some bacteria not possess plasmids and others exhibit more than one different chromosome? FEMS Microbiol. Rev. 1998, 22, 255–275, doi:10.1111/j.1574-6976.1998.tb00370.x.
[78]
Teyssier, C.; Marchandin, H.; Simeon De Buochberg, M.; Ramuz, M.; Jumas-Bilak, E. Atypical 16S rRNA gene copies in Ochrobactrum intermedium strains reveal a large genomic rearrangement by recombination between rrn copies. J. Bacteriol. 2003, 185, 2901–2909, doi:10.1128/JB.185.9.2901-2909.2003.
[79]
Georgiades, K.; Merhej, V.; El Karkouri, K.; Raoult, D.; Pontarotti, P. Gene gain and loss events in Rickettsia and Orientia species. Biol. Direct 2011, 6, 6, doi:10.1186/1745-6150-6-6.
[80]
Koonin, E.V. Darwinian evolution in the light of genomics. Nucleic Acids Res. 2009, 37, 1011–1034. 19213802
[81]
Georgiades, K.; Raoult, D. Genomes of the most dangerous epidemic bacteria have a virulence repertoire characterized by fewer genes but more toxin-antitoxin modules. PLoS One 2011, 6, e17962, doi:10.1371/journal.pone.0017962. 21437250
[82]
Pellett, S.; Bigley, D.V.; Grimes, D.J. Distribution of Pseudomonas aeruginosa in a riverine ecosystem. Appl. Environ. Microbiol. 1983, 45, 328–332. 6401982
[83]
Khan, N.H.; Ishii, Y.; Kimata-Kino, N.; Esaki, H.; Nishino, T.; Nishimura, M.; Kogure, K. Isolation of Pseudomonas aeruginosa from open ocean and comparison with freshwater, clinical, and animal isolates. Microb. Ecol. 2007, 53, 173–186, doi:10.1007/s00248-006-9059-3.
[84]
Schwartz, T.; Volkmann, H.; Kirchen, S.; Kohnen, W.; Schon-Holz, K.; Jansen, B.; Obst, U. Real-time PCR detection of Pseudomonas aeruginosa in clinical and municipal wastewater and genotyping of the ciprofloxacin-resistant isolates. FEMS Microbiol. Ecol. 2006, 57, 158–167, doi:10.1111/j.1574-6941.2006.00100.x.
[85]
Deziel, E.; Paquette, G.; Villemur, R.; Lepine, F.; Bisaillon, J. Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol. 1996, 62, 1908–1912. 16535330
[86]
Livermore, D.M. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare? Clin. Infect. Dis. 2002, 34, 634–640, doi:10.1086/338782.
[87]
Frimmersdorf, E.; Horatzek, S.; Pelnikevich, A.; Wiehlmann, L.; Schomburg, D. How Pseudomonas aeruginosa adapts to various environments: A metabolomic approach. Environ. Microbiol. 2010, 12, 1734–1747, doi:10.1111/j.1462-2920.2010.02253.x.
[88]
Stover, C.K.; Pham, X.Q.; Erwin, A.L.; Mizoguchi, S.D.; Warrener, P.; Hickey, M.J.; Brinkman, F.S.; Hufnagle, W.O.; Kowalik, D.J.; Lagrou, M.; et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000, 406, 959–964, doi:10.1038/35023079. 10984043
Teyssier, C.; Marchandin, H.; Jumas-Bilak, E. The genome of alpha-proteobacteria: Complexity, reduction, diversity and fluidity. Can. J. Microbiol. 2004, 50, 383–396, doi:10.1139/w04-033.
[91]
Kung, V.L.; Ozer, E.A.; Hauser, A.R. The accessory genome of Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev. 2010, 74, 621–641, doi:10.1128/MMBR.00027-10.
[92]
Schmidt, K.D.; Tummler, B.; Romling, U. Comparative genome mapping of Pseudomonas aeruginosa PAO with P. aeruginosa C, which belongs to a major clone in cystic fibrosis patients and aquatic habitats. J. Bacteriol. 1996, 178, 85–93. 8550447
[93]
Romling, U.; Schmidt, K.D.; Tummler, B. Large genome rearrangements discovered by the detailed analysis of 21 Pseudomonas aeruginosa clone C isolates found in environment and disease habitats. J. Mol. Biol. 1997, 271, 386–404, doi:10.1006/jmbi.1997.1186.
Wolfgang, M.C.; Kulasekara, B.R.; Liang, X.; Boyd, D.; Wu, K.; Yang, Q.; Miyada, C.G.; Lory, S. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2003, 100, 8484–8489, doi:10.1073/pnas.0832438100. 12815109
[106]
Dotsch, A.; Klawonn, F.; Jarek, M.; Scharfe, M.; Blocker, H.; Haussler, S. Evolutionary conservation of essential and highly expressed genes in Pseudomonas aeruginosa. BMC Genomics 2010, 11, 234, doi:10.1186/1471-2164-11-234.
[107]
Wiehlmann, L.; Wagner, G.; Cramer, N.; Siebert, B.; Gudowius, P.; Morales, G.; Kohler, T.; van Delden, C.; Weinel, C.; Slickers, P.; et al. Population structure of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2007, 104, 8101–8106, doi:10.1073/pnas.0609213104. 17468398
[108]
Aujoulat, F.; Lebreton, F.; Romano, S.; Delage, M.; Marchandin, H.; Brabet, M.; Bricard, F.; Godreuil, S.; Parer, S.; Jumas-Bilak, E. Comparative diffusion assay to assess efficacy of topical antimicrobial agents against Pseudomonas aeruginosa in burns care. Ann. Clin. Microbiol. Antimicrob. 2011, 10, 27, doi:10.1186/1476-0711-10-27.
[109]
Klockgether, J.; Wurdemann, D.; Reva, O.; Wiehlmann, L.; Tummler, B. Diversity of the abundant pKLC102/PAGI-2 family of genomic islands in Pseudomonas aeruginosa. J. Bacteriol. 2007, 189, 2443–2459, doi:10.1128/JB.01688-06.
[110]
Williams, K.P. Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: Sublocation preference of integrase subfamilies. Nucleic Acids Res. 2002, 30, 866–875, doi:10.1093/nar/30.4.866. 11842097
[111]
Pirnay, J.P.; Matthijs, S.; Colak, H.; Chablain, P.; Bilocq, F.; Van Eldere, J.; De Vos, D.; Zizi, M.; Triest, L.; Cornelis, P. Global Pseudomonas aeruginosa biodiversity as reflected in a Belgian river. Environ. Microbiol. 2005, 7, 969–980, doi:10.1111/j.1462-2920.2005.00776.x.
[112]
Pirnay, J.P.; De Vos, D.; Cochez, C.; Bilocq, F.; Vanderkelen, A.; Zizi, M.; Ghysels, B.; Cornelis, P. Pseudomonas aeruginosa displays an epidemic population structure. Environ. Microbiol. 2002, 4, 898–911, doi:10.1046/j.1462-2920.2002.00321.x.
[113]
Yang, L.; Jelsbak, L.; Marvig, R.L.; Damkiaer, S.; Workman, C.T.; Rau, M.H.; Hansen, S.K.; Folkesson, A.; Johansen, H.K.; Ciofu, O.; et al. Evolutionary dynamics of bacteria in a human host environment. Proc. Natl. Acad. Sci. USA 2011, 108, 7481–7486, doi:10.1073/pnas.1018249108. 21518885
[114]
Romling, U.; Fiedler, B.; Bosshammer, J.; Grothues, D.; Greipel, J.; von der Hardt, H.; Tummler, B. Epidemiology of chronic Pseudomonas aeruginosa infections in cystic fibrosis. J. Infect. Dis. 1994, 170, 1616–1621, doi:10.1093/infdis/170.6.1616.
[115]
Hancock, R.E.; Mutharia, L.M.; Chan, L.; Darveau, R.P.; Speert, D.P.; Pier, G.B. Pseudomonas aeruginosa isolates from patients with cystic fibrosis: A class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains. Infect. Immun. 1983, 42, 170–177. 6413410
[116]
Ernst, R.K.; Adams, K.N.; Moskowitz, S.M.; Kraig, G.M.; Kawasaki, K.; Stead, C.M.; Trent, M.S.; Miller, S.I. The Pseudomonas aeruginosa lipid A deacylase: Selection for expression and loss within the cystic fibrosis airway. J. Bacteriol. 2006, 188, 191–201, doi:10.1128/JB.188.1.191-201.2006. 16352835
[117]
Barth, A.L.; Pitt, T.L. Auxotrophic variants of Pseudomonas aeruginosa are selected from prototrophic wild-type strains in respiratory infections in patients with cystic fibrosis. J. Clin. Microbiol. 1995, 33, 37–40. 7699062
[118]
Luzar, M.A.; Thomassen, M.J.; Montie, T.C. Flagella and motility alterations in Pseudomonas aeruginosa strains from patients with cystic fibrosis: Relationship to patient clinical condition. Infect. Immun. 1985, 50, 577–582. 3932214
[119]
Oliver, A.; Canton, R.; Campo, P.; Baquero, F.; Blazquez, J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 2000, 288, 1251–1254, doi:10.1126/science.288.5469.1251.
[120]
Nivens, D.E.; Ohman, D.E.; Williams, J.; Franklin, M.J. Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J. Bacteriol. 2001, 183, 1047–1057, doi:10.1128/JB.183.3.1047-1057.2001. 11208804
[121]
Mena, A.; Smith, E.E.; Burns, J.L.; Speert, D.P.; Moskowitz, S.M.; Perez, J.L.; Oliver, A. Genetic adaptation of Pseudomonas aeruginosa to the airways of cystic fibrosis patients is catalyzed by hypermutation. J. Bacteriol. 2008, 190, 7910–7917, doi:10.1128/JB.01147-08.
[122]
Mathee, K.; Ciofu, O.; Sternberg, C.; Lindum, P.W.; Campbell, J.I.; Jensen, P.; Johnsen, A.H.; Givskov, M.; Ohman, D.E.; Molin, S.; et al. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: A mechanism for virulence activation in the cystic fibrosis lung. Microbiology 1999, 145, 1349–1357, doi:10.1099/13500872-145-6-1349.
[123]
Mahenthiralingam, E.; Campbell, M.E.; Speert, D.P. Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect. Immun. 1994, 62, 596–605. 8300217
[124]
D’Argenio, D.A.; Wu, M.; Hoffman, L.R.; Kulasekara, H.D.; Deziel, E.; Smith, E.E.; Nguyen, H.; Ernst, R.K.; Larson Freeman, T.J.; Spencer, D.H.; et al. Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol. Microbiol. 2007, 64, 512–533, doi:10.1111/j.1365-2958.2007.05678.x.
[125]
Rau, M.H.; Hansen, S.K.; Johansen, H.K.; Thomsen, L.E.; Workman, C.T.; Nielsen, K.F.; Jelsbak, L.; Hoiby, N.; Yang, L.; Molin, S. Early adaptive developments of Pseudomonas aeruginosa after the transition from life in the environment to persistent colonization in the airways of human cystic fibrosis hosts. Environ. Microbiol. 2010, 12, 1643–1658. 20406284
[126]
Smith, E.E.; Buckley, D.G.; Wu, Z.; Saenphimmachak, C.; Hoffman, L.R.; D'Argenio, D.A.; Miller, S.I.; Ramsey, B.W.; Speert, D.P.; Moskowitz, S.M.; et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl. Acad. Sci. USA 2006, 103, 8487–8492, doi:10.1073/pnas.0602138103. 16687478
[127]
Jelsbak, L.; Johansen, H.K.; Frost, A.L.; Thogersen, R.; Thomsen, L.E.; Ciofu, O.; Yang, L.; Haagensen, J.A.; Hoiby, N.; Molin, S. Molecular epidemiology and dynamics of Pseudomonas aeruginosa populations in lungs of cystic fibrosis patients. Infect. Immun. 2007, 75, 2214–2224, doi:10.1128/IAI.01282-06. 17261614
[128]
Hoboth, C.; Hoffmann, R.; Eichner, A.; Henke, C.; Schmoldt, S.; Imhof, A.; Heesemann, J.; Hogardt, M. Dynamics of adaptive microevolution of hypermutable Pseudomonas aeruginosa during chronic pulmonary infection in patients with cystic fibrosis. J. Infect. Dis. 2009, 200, 118–130, doi:10.1086/599360.
[129]
Bragonzi, A.; Paroni, M.; Nonis, A.; Cramer, N.; Montanari, S.; Rejman, J.; Di Serio, C.; Doring, G.; Tummler, B. Pseudomonas aeruginosa microevolution during cystic fibrosis lung infection establishes clones with adapted virulence. Am. J. Respir. Crit. Care Med. 2009, 180, 138–145, doi:10.1164/rccm.200812-1943OC.
[130]
Kresse, A.U.; Dinesh, S.D.; Larbig, K.; Romling, U. Impact of large chromosomal inversions on the adaptation and evolution of Pseudomonas aeruginosa chronically colonizing cystic fibrosis lungs. Mol. Microbiol. 2003, 47, 145–158. 12492860
[131]
Janda, J.M.; Abbott, S.L. The genus Aeromonas: Taxonomy, pathogenicity, and infection. Clin. Microbiol. Rev. 2010, 23, 35–73, doi:10.1128/CMR.00039-09.
[132]
Seshadri, R.; Joseph, S.W.; Chopra, A.K.; Sha, J.; Shaw, J.; Graf, J.; Haft, D.; Wu, M.; Ren, Q.; Rosovitz, M.J.; et al. Genome sequence of Aeromonas hydrophila ATCC 7966T: Jack of all trades. J. Bacteriol. 2006, 188, 8272–8282, doi:10.1128/JB.00621-06. 16980456
[133]
Janda, J.M.; Abbott, S.L. Evolving concepts regarding the genus Aeromonas: An expanding Panorama of species, disease presentations, and unanswered questions. Clin. Infect. Dis. 1998, 27, 332–344, doi:10.1086/514652. 9709884
[134]
Monfort, P.; Baleux, B. Distribution and survival of motile Aeromonas spp. in brackish water receiving sewage treatment effluent. Appl. Environ. Microbiol. 1991, 57, 2459–2467. 1768120
Pidiyar, V.; Kaznowski, A.; Narayan, N.B.; Patole, M.; Shouche, Y.S. Aeromonas culicicola sp. nov., from the midgut of Culex quinquefasciatus. Int. J. Syst. Evol. Microbiol. 2002, 52, 1723–1728, doi:10.1099/ijs.0.02019-0.
[137]
Rahman, M.; Abd, H.; Romling, U.; Sandstrom, G.; Mollby, R. Aeromonas-Acanthamoeba interaction and early shift to a viable but nonculturable state of Aeromonas by Acanthamoeba. J. Appl. Microbiol. 2008, 104, 1449–1457, doi:10.1111/j.1365-2672.2007.03687.x.
[138]
Sneath, P.H. Evidence from Aeromonas for genetic crossing-over in ribosomal sequences. Int. J. Syst. Bacteriol. 1993, 43, 626–629, doi:10.1099/00207713-43-3-626.
[139]
Morandi, A.; Zhaxybayeva, O.; Gogarten, J.P.; Graf, J. Evolutionary and diagnostic implications of intragenomic heterogeneity in the 16S rRNA gene in Aeromonas strains. J. Bacteriol. 2005, 187, 6561–6564, doi:10.1128/JB.187.18.6561-6564.2005.
[140]
Umelo, E.; Trust, T.J. Physical map of the chromosome of Aeromonas salmonicida and genomic comparisons between Areomonas strains. Microbiology 1998, 144, 2141–2149, doi:10.1099/00221287-144-8-2141.
[141]
Reith, M.E.; Singh, R.K.; Curtis, B.; Boyd, J.M.; Bouevitch, A.; Kimball, J.; Munholland, J.; Murphy, C.; Sarty, D.; Williams, J.; et al. The genome of Aeromonas salmonicida subsp. salmonicida A449: Insights into the evolution of a fish pathogen. BMC Genomics 2008, 9, 427, doi:10.1186/1471-2164-9-427. 18801193
[142]
Silver, A.C.; Kikuchi, Y.; Fadl, A.A.; Sha, J.; Chopra, A.K.; Graf, J. Interaction between innate immune cells and a bacterial type III secretion system in mutualistic and pathogenic associations. Proc. Natl. Acad. Sci. USA 2007, 104, 9481–9486, doi:10.1073/pnas.0700286104. 17517651
[143]
Silver, A.C.; Graf, J. Prevalence of genes encoding the type three secretion system and the effectors AexT and AexU in the Aeromonas veronii group. DNA Cell Biol. 2009, 28, 383–388, doi:10.1089/dna.2009.0867.
[144]
Hentschel, U.; Steinert, M.; Hacker, J. Common molecular mechanisms of symbiosis and pathogenesis. Trends Microbiol. 2000, 8, 226–231, doi:10.1016/S0966-842X(00)01758-3. 10785639
[145]
Sha, J.; Wang, S.F.; Suarez, G.; Sierra, J.C.; Fadl, A.A.; Erova, T.E.; Foltz, S.M.; Khajanchi, B.K.; Silver, A.; Graf, J.; et al. Further characterization of a type III secretion system (T3SS) and of a new effector protein from a clinical isolate of Aeromonas hydrophila--part I. Microb. Pathog. 2007, 43, 127–146, doi:10.1016/j.micpath.2007.05.002.
[146]
Silver, A.C.; Rabinowitz, N.M.; Kuffer, S.; Graf, J. Identification of Aeromonas veronii genes required for colonization of the medicinal leech, Hirudo verbana. J. Bacteriol. 2007, 189, 6763–6772, doi:10.1128/JB.00685-07. 17616592
[147]
Silver, A.C.; Williams, D.; Faucher, J.; Horneman, A.J.; Gogarten, J.P.; Graf, J. Complex evolutionary history of the Aeromonas veronii group revealed by host interaction and DNA sequence data. PLoS One 2011, 6, e16751, doi:10.1371/journal.pone.0016751. 21359176
O'Callaghan, D.; Cazevieille, C.; Allardet-Servent, A.; Boschiroli, M.L.; Bourg, G.; Foulongne, V.; Frutos, P.; Kulakov, Y.; Ramuz, M. A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol. Microbiol. 1999, 33, 1210–1220. 10510235
[150]
Chain, P.S.; Lang, D.M.; Comerci, D.J.; Malfatti, S.A.; Vergez, L.M.; Shin, M.; Ugalde, R.A.; Garcia, E.; Tolmasky, M.E. Genome of Ochrobactrum anthropi ATCC 49188 T, a versatile opportunistic pathogen and symbiont of several eukaryotic hosts. J. Bacteriol. 2011, 193, 4274–4275, doi:10.1128/JB.05335-11. 21685287
[151]
Jumas-Bilak, E.; Michaux-Charachon, S.; Bourg, G.; Ramuz, M.; Allardet-Servent, A. Unconventional genomic organization in the alpha subgroup of the Proteobacteria. J. Bacteriol. 1998, 180, 2749–2755. 9573163
[152]
Tsolis, R.M.; Seshadri, R.; Santos, R.L.; Sangari, F.J.; Lobo, J.M.; de Jong, M.F.; Ren, Q.; Myers, G.; Brinkac, L.M.; Nelson, W.C.; et al. Genome degradation in Brucella ovis corresponds with narrowing of its host range and tissue tropism. PLoS One 2009, 4, e5519, doi:10.1371/journal.pone.0005519. 19436743
[153]
DelVecchio, V.G.; Kapatral, V.; Redkar, R.J.; Patra, G.; Mujer, C.; Los, T.; Ivanova, N.; Anderson, I.; Bhattacharyya, A.; Lykidis, A.; et al. The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proc. Natl. Acad. Sci. USA 2002, 99, 443–448, doi:10.1073/pnas.221575398. 11756688
Sangari, F.J.; Seoane, A.; Rodriguez, M.C.; Aguero, J.; Garcia Lobo, J.M. Characterization of the urease operon of Brucella abortus and assessment of its role in virulence of the bacterium. Infect. Immun. 2007, 75, 774–780, doi:10.1128/IAI.01244-06.