全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Genes  2012 

A Model of Repetitive-DNA-Organized Chromatin Network of Interphase Chromosomes

DOI: 10.3390/genes3010167

Keywords: repetitive DNA, repetitive element, repetitive sequence, DNA repeat, junk DNA, transposons, chromosome, chromatin

Full-Text   Cite this paper   Add to My Lib

Abstract:

During interphase, chromosomes are relatively de-condensed in the nuclear space. Interphase chromosomes are known to occupy nuclear space in a non-random manner (chromosome territory); however, their internal structures are poorly defined. In particular, little is understood about the molecular mechanisms that govern the internal organization of interphase chromosomes. The author recently proposed that pairing (or interaction) of repetitive DNA-containing chromatin regions is a critical driving force that specifies the higher-order organization of eukaryotic chromosomes. Guided by this theoretical framework and published experimental data on the structure of interphase chromosomes and the spatial distribution of repetitive DNA in interphase nuclei, I postulate here a molecular structure of chromatin organization in interphase chromosomes. According to this model, an interphase chromosome is a chromatin mesh (or lattice) that is formed by repeat pairing (RP). The mesh consists of two types of structural components: chromosome nodes and loose chromatin fibers. Chromosome nodes are DNA repeat assemblies (RAs) that are formed via RP, while loose fibers include chromatin loops that radiate from the nodes. Different loops crosslink by RPs and form a large integrated chromatin network. I suggest that the organization of the chromatin network of a given interphase chromosome is intrinsically specified by the distribution of repetitive DNA elements on the linear chromatin. The stability of the organization is governed by the collection of RA-formed nodes, and the dynamics of the organization is driven by the assembling and disassembling of the nodes.

References

[1]  Cremer, T.; Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2001, 2, 292–301.
[2]  Cremer, T.; Cremer, M. Chromosome territories. Cold Spring Harb. Perspect. Biol. 2010, 2, a003889.
[3]  Rouquette, J.; Genoud, C.; Vazquez-Nin, G.H.; Kraus, B.; Cremer, T.; Fakan, S. Revealing the high-resolution three-dimensional network of chromatin and interchromatin space: A novel electron-microscopic approach to reconstructing nuclear architecture. Chromosome Res. 2009, 17, 801–810.
[4]  Dehghani, H.; Dellaire, G.; Bazett-Jones, D.P. Organization of chromatin in the interphase mammalian cell. Micron 2005, 36, 95–108.
[5]  Belmont, A.S.; Bruce, K. Visualization of G1 chromosomes: A folded, twisted, supercoiled chromonema model of interphase chromatid structure. J. Cell Biol. 1994, 127, 287–302, doi:10.1083/jcb.127.2.287.
[6]  Markaki, Y.; Gunkel, M.; Schermelleh, L.; Beichmanis, S.; Neumann, J.; Heidemann, M.; Leonhardt, H.; Eick, D.; Cremer, C.; Cremer, T. Functional nuclear organization of transcription and DNA replication. Cold Spring Harb. Symp. Quant. Biol. 2010, 75, 475–492.
[7]  Lieberman-Aiden, E.; van Berkum, N.L.; Williams, L.; Imakaev, M.; Ragoczy, T.; Telling, A.; Amit, I.; Lajoie, B.R.; Sabo, P.J.; Dorschner, M.O.; et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 2009, 326, 289–293.
[8]  Simonis, M.; Klous, P.; Splinter, E.; Moshkin, Y.; Willemsen, R.; de Wit, E.; van Steensel, B.; de Laat, W. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 2006, 38, 1348.
[9]  Tang, S.J. Chromatin organization by repetitive elements (CORE): A genomic principle for the higher-order structure of chromosomes. Genes 2011, 2, 502–515.
[10]  Tang, S.-J. A model of DNA repeat-assembled mitotic chromosomal skeleton. Genes 2011, 2, 661–670.
[11]  Grewal, S.I.S.; Jia, S. Heterochromatin revisited. Nat. Rev. Genet. 2007, 8, 35–46.
[12]  Branco, M.R.; Pombo, A. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol. 2006, 4, e138.
[13]  Albiez, H.; Cremer, M.; Tiberi, C.; Vecchio, L.; Schermelleh, L.; Dittrich, S.; Küpper, K.; Joffe, B.; Thormeyer, T.; von Hase, J.; et al. Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosome Res. 2006, 14, 707–733, doi:10.1007/s10577-006-1086-x.
[14]  Dekker, J.; Rippe, K.; Dekker, M.; Kleckner, N. Capturing chromosome conformation. Science 2002, 295, 1306–1311.
[15]  Christova, R.; Yaneva, J.; Galcheva-Gargova, Z. Some features of DNA fragments associated in vivo with the nuclear lamina. Biosci. Rep. 1989, 9, 587–592, doi:10.1007/BF01119802.
[16]  Hiraoka, Y.; Minden, J.S.; Swedlow, J.R.; Sedat, J.W.; Agard, D.A. Focal points for chromosome condensation and decondensation revealed by three-dimensional in vivo time-lapse microscopy. Nature 1989, 342, 293–296.
[17]  Manders, E.M.M.; Kimura, H.; Cook, P.R. Direct imaging of DNA in living cells reveals the dynamics of chromosome formation. J. Cell Biol. 1999, 144, 813–821.
[18]  Mekhail, K.; Seebacher, J.; Gygi, S.P.; Moazed, D. Role for perinuclear chromosome tethering in maintenance of genome stability. Nature 2008, 456, 667–670.
[19]  Goldberg, G.I.; Collier, I.; Cassel, A. Specific DNA sequences associated with the nuclear matrix in synchronized mouse 3T3 cells. Proc. Natl. Acad. Sci. USA 1983, 80, 6887–6891.
[20]  Boulikas, T.; Kong, C.F. Multitude of inverted repeats characterizes a class of anchorage sites of chromatin loops to the nuclear matrix. J. Cell. Biochem. 1993, 53, 1–12.
[21]  Richard, G.-F.; Kerrest, A.; Dujon, B. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol. Mol. Biol. Rev. 2008, 72, 686–727.
[22]  Felsenfeld, G.; Groudine, M. Controlling the double helix. Nature 2003, 421, 448–453.
[23]  Hakimi, M.-A.; Bochar, D.A.; Schmiesing, J.A.; Dong, Y.; Barak, O.G.; Speicher, D.W.; Yokomori, K.; Shiekhattar, R. A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature 2002, 418, 994–998.
[24]  Dietzel, S.; Jauch, A.; Kienle, D.; Qu, G.; Holtgreve-Grez, H.; Eils, R.; Munkel, C.; Bittner, M.; Meltzer, P.S.; Trent, J.M.; et al. Separate and variably shaped chromosome arm domains are disclosed by chromosome arm painting in human cell nuclei. Chromosome Res. 1998, 6, 25–33, doi:10.1023/A:1009262223693.
[25]  Chubb, J.R.; Bickmore, W.A. Considering nuclear compartmentalization in the light of nuclear dynamics. Cell 2003, 112, 403–406.
[26]  Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell; Garland Science: New York, NY, USA, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133