全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Genes  2012 

Transgenic Models of Spinocerebellar Ataxia Type 10: Modeling a Repeat Expansion Disorder

DOI: 10.3390/genes3030481

Keywords: RNA-mediated gain-of-function, genotype-phenotype correlations, autosomal dominant cerebellar ataxia, repeat expansion

Full-Text   Cite this paper   Add to My Lib

Abstract:

Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant neurodegenerative disease with a spectrum of phenotypes. SCA10 is caused by a pentanucleotide repeat expansion of the ATTCT motif within intron 9 of ATAXIN 10 (ATXN10). Patients present with cerebellar ataxia; however, a subset also develops epileptic seizures which significantly contribute to the morbidity and mortality of the disease. Past research from our lab has demonstrated that epileptic SCA10 patients predominantly originate from or have ancestral ties to Mexico. In addition, a large proportion of epileptic SCA10 patients carry repeat interruptions within their SCA10 expansion. This paper outlines the variability in SCA10 phenotypes and our attempts to model these phenotypes using transgenic mouse models and highlights the benefits of using a transgenic model organism to understand the pathological mechanisms of a human disease.

References

[1]  Alonso, E.; Martínez‐Ruano, L.; de Biase, I.; Mader, C.; Ochoa, A.; Yescas, P.; Gutiérrez, R.; White, M.; Ruano, L.; Fragoso‐Benítez, M. Distinct distribution of autosomal dominant spinocerebellar ataxia in the Mexican population. Mov. Disord. 2007, 22, 1050–1053, doi:10.1002/mds.21470.
[2]  Matsuura, T.; Yamagata, T.; Burgess, D.L.; Rasmussen, A.; Grewal, R.P.; Watase, K.; Khajavi, M.; McCall, A.E.; Davis, C.F.; Zu, L. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat. Genet. 2000, 26, 191–194, doi:10.1038/79911.
[3]  Matsuura, T.; Fang, P.; Pearson, C.E.; Jayakar, P.; Ashizawa, T.; Roa, B.B.; Nelson, D.L. Interruptions in the expanded ATTCT repeat of spinocerebellar ataxia type 10: Repeat purity as a disease modifier? Am. J. Hum. Genet. 2006, 78, 125–129, doi:10.1086/498654.
[4]  Raskin, S.; Ashizawa, T.; Teive, H.A.; Arruda, W.O.; Fang, P.; Gao, R.; White, M.C.; Werneck, L.C.; Roa, B. Reduced penetrance in a Brazilian family with spinocerebellar ataxia type 10. Arch. Neurol. 2007, 64, 591–594.
[5]  Lin, X.; Ashizawa, T. SCA10 and ATTCT repeat expansion: Clinical features and molecular aspects. Cytogenet. Genome Res. 2003, 100, 184–188, doi:10.1159/000072853.
[6]  Grewal, R.P.; Achari, M.; Matsuura, T.; Durazo, A.; Tayag, E.; Zu, L.; Pulst, S.M.; Ashizawa, T. Clinical features and ATTCT repeat expansion in spinocerebellar ataxia type 10. Arch. Neurol. 2002, 59, 1285–1290, doi:10.1001/archneur.59.8.1285.
[7]  Rasmussen, A.; Matsuura, T.; Ruano, L.; Yescas, P.; Ochoa, A.; Ashizawa, T.; Alonso, E. Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia type 10. Ann. Neurol. 2001, 50, 234–239, doi:10.1002/ana.1081.
[8]  Teive, H.A.; Roa, B.B.; Raskin, S.; Fang, P.; Arruda, W.O.; Neto, Y.C.; Gao, R.; Werneck, L.C.; Ashizawa, T. Clinical phenotype of Brazilian families with spinocerebellar ataxia 10. Neurology 2004, 63, 1509–1512.
[9]  Gatto, E.M.; Gao, R.; White, M.C.; Uribe Roca, M.C.; Etcheverry, J.L.; Persi, G.; Poderoso, J.J.; Ashizawa, T. Ethnic origin and extrapyramidal signs in an Argentinean spinocerebellar ataxia type 10 family. Neurology 2007, 69, 216–218.
[10]  Matsuura, T.; Achari, M.; Khajavi, M.; Bachinski, L.L.; Zoghbi, H.Y.; Ashizawa, T. Mapping of the gene for a novel spinocerebellar ataxia with pure cerebellar signs and epilepsy. Ann. Neurol. 1999, 45, 407–411, doi:10.1002/1531-8249(199903)45:3<407::AID-ANA21>3.0.CO;2-D.
[11]  Gallardo, M.; Soto, A. Clinical characterization of a Venezuelan family with spinocerebellar ataxia type 10. Mov. Disord. 2009, 24, S12.
[12]  Teive, H.A.; Munhoz, R.P.; Raskin, S.; Arruda, W.O.; de Paola, L.; Werneck, L.C.; Ashizawa, T. Spinocerebellar ataxia type 10: Frequency of epilepsy in a large sample of Brazilian patients. Mov. Disord. 2010, 25, 2875–2878.
[13]  van Zandvoort, M.A.; de Grauw, C.J.; Gerritsen, H.C.; Broers, J.L.; oude Egbrink, M.G.; Ramaekers, F.C.; Slaaf, D.W. Discrimination of DNA and RNA in cells by a vital fluorescent probe: Lifetime imaging of SYTO13 in healthy and apoptotic cells. Cytometry 2002, 47, 226–235, doi:10.1002/cyto.10076.
[14]  Wakamiya, M.; Matsuura, T.; Liu, Y.; Schuster, G.C.; Gao, R.; Xu, W.; Sarkar, P.S.; Lin, X.; Ashizawa, T. The role of ataxin 10 in the pathogenesis of spinocerebellar ataxia type 10. Neurology 2006, 67, 607–613.
[15]  Marz, P.; Probst, A.; Lang, S.; Schwager, M.; Rose-John, S.; Otten, U.; Ozbek, S. Ataxin-10, the spinocerebellar ataxia type 10 neurodegenerative disorder protein, is essential for survival of cerebellar neurons. J. Biol. Chem. 2004, 279, 35542–35550.
[16]  Waragai, M.; Nagamitsu, S.; Xu, W.; Li, Y.J.; Lin, X.; Ashizawa, T. Ataxin 10 induces neuritogenesis via interaction with G-protein beta2 subunit. J. Neurosci. Res. 2006, 83, 1170–1178, doi:10.1002/jnr.20807.
[17]  Andrali, S.S.; Marz, P.; Ozcan, S. Ataxin-10 interacts with O-GlcNAc transferase OGT in pancreatic beta cells. Biochem. Biophys. Res. Commun. 2005, 337, 149–153, doi:10.1016/j.bbrc.2005.09.026.
[18]  Stetefeld, J.; Bendfeldt, K.; Nitsch, C.; Reinstein, J.; Shoeman, R.L.; Dimitriades-Schmutz, B.; Schwager, M.; Leiser, D.; Ozcan, S.; et al. Ataxin-10 interacts with O-linked beta-N-acetylglucosamine transferase in the brain. J. Biol. Chem. 2006, 281, 20263–20270.
[19]  Potaman, V.N.; Bissler, J.J.; Hashem, V.I.; Oussatcheva, E.A.; Lu, L.; Shlyakhtenko, L.S.; Lyubchenko, Y.L.; Matsuura, T.; Ashizawa, T.; Leffak, M. Unpaired structures in SCA10 (ATTCT)n.(AGAAT)n repeats. J. Mol. Biol. 2003, 326, 1095–1111, doi:10.1016/S0022-2836(03)00037-8.
[20]  Liu, G.; Bissler, J.J.; Sinden, R.R.; Leffak, M. Unstable spinocerebellar ataxia type 10 (ATTCT*(AGAAT) repeats are associated with aberrant replication at the ATX10 locus and replication origin-dependent expansion at an ectopic site in human cells. Mol. Cell. Biol. 2007, 27, 7828–7838, doi:10.1128/MCB.01276-07.
[21]  Cherng, N.; Shishkin, A.A.; Schlager, L.I.; Tuck, R.H.; Sloan, L.; Matera, R.; Sarkar, P.S.; Ashizawa, T.; Freudenreich, C.H.; Mirkin, S.M. Expansions, contractions, and fragility of the spinocerebellar ataxia type 10 pentanucleotide repeat in yeast. Proc. Natl. Acad. Sci. USA 2011, 108, 2843–2848.
[22]  Hagerman, K.A.; Ruan, H.; Edamura, K.N.; Matsuura, T.; Pearson, C.E.; Wang, Y.H. The ATTCT repeats of spinocerebellar ataxia type 10 display strong nucleosome assembly which is enhanced by repeat interruptions. Gene 2009, 434, 29–34, doi:10.1016/j.gene.2008.12.011.
[23]  Keren, B.; Jacquette, A.; Depienne, C.; Leite, P.; Durr, A.; Carpentier, W.; Benyahia, B.; Ponsot, G.; Soubrier, F.; Brice, A. Evidence against haploinsuffiency of human ataxin 10 as a cause of spinocerebellar ataxia type 10. Neurogenetics 2010, 11, 273–274, doi:10.1007/s10048-009-0227-8.
[24]  White, M.C.; Gao, R.; Xu, W.; Mandal, S.M.; Lim, J.G.; Hazra, T.K.; Wakamiya, M.; Edwards, S.F.; Raskin, S.; Teive, H.A.G. Inactivation of hnRNP K by expanded intronic AUUCU repeat induces apoptosis via translocation of PKCdelta to mitochondria in spinocerebellar ataxia 10. PLoS Genet. 2010, 6, e1000984.
[25]  White, M.; Xia, G.; Gao, R.; Wakamiya, M.; Sarkar, P.S.; McFarland, K.; Ashizawa, T. Transgenic mice with SCA10 pentanucleotide repeats show motor phenotype and susceptibility to seizure: A toxic RNA gain-of-function model. J. Neurosci. Res. 2012, 90, 706–714, doi:10.1002/jnr.22786.
[26]  Handa, V.; Yeh, H.J.; McPhie, P.; Usdin, K. The AUUCU repeats responsible for spinocerebellar ataxia type 10 form unusual RNA hairpins. J. Biol. Chem. 2005, 280, 29340–29345.
[27]  Borchelt, D.R.; Davis, J.; Fischer, M.; Lee, M.K.; Slunt, H.H.; Ratovitsky, T.; Regard, J.; Copeland, N.G.; Jenkins, N.A.; Sisodia, S.S. A vector for expressing foreign genes in the brains and hearts of transgenic mice. Genet. Anal. 1996, 13, 159–163, doi:10.1016/S1050-3862(96)00167-2.
[28]  Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 1999, 21, 70–71, doi:10.1038/5007.
[29]  Schauwecker, P.E. The relevance of individual genetic background and its role in animal models of epilepsy. Epilepsy Res. 2011, 97, 1–11, doi:10.1016/j.eplepsyres.2011.09.005.
[30]  Ferraro, T.N.; Golden, G.T.; Smith, G.G.; Berrettini, W.H. Differential susceptibility to seizures induced by systemic kainic acid treatment in mature DBA/2J and C57BL/6J mice. Epilepsia 1995, 36, 301–307, doi:10.1111/j.1528-1157.1995.tb00999.x.
[31]  Schauwecker, P.E.; Steward, O. Genetic determinants of susceptibility to excitotoxic cell death: Implications for gene targeting approaches. Proc. Natl. Acad. Sci. USA 1997, 94, 4103–4108, doi:10.1073/pnas.94.8.4103.
[32]  Forss-Petter, S.; Danielson, P.E.; Catsicas, S.; Battenberg, E.; Price, J.; Nerenberg, M.; Sutcliffe, J.G. Transgenic mice expressing beta-galactosidase in mature neurons under neuron-specific enolase promoter control. Neuron 1990, 5, 187–197, doi:10.1016/0896-6273(90)90308-3.
[33]  Vandaele, S.; Nordquist, D.T.; Feddersen, R.M.; Tretjakoff, I.; Peterson, A.C.; Orr, H.T. Purkinje cell protein-2 regulatory regions and transgene expression in cerebellar compartments. Genes Dev. 1991, 5, 1136–1148, doi:10.1101/gad.5.7.1136.
[34]  Oberdick, J.; Smeyne, R.J.; Mann, J.R.; Zackson, S.; Morgan, J.I. A promoter that drives transgene expression in cerebellar Purkinje and retinal bipolar neurons. Science 1990, 248, 223–226.
[35]  Saunders, T.L. Inducible transgenic mouse models. Methods Mol. Biol. 2011, 693, 103–115, doi:10.1007/978-1-60761-974-1_7.
[36]  Furth, P.A.; St. Onge, L.; Boger, H.; Gruss, P.; Gossen, M.; Kistner, A.; Bujard, H.; Hennighausen, L. Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc. Natl. Acad. Sci. USA 1994, 91, 9302–9306.
[37]  Kistner, A.; Gossen, M.; Zimmermann, F.; Jerecic, J.; Ullmer, C.; Lubbert, H.; Bujard, H. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc. Natl. Acad. Sci. USA 1996, 93, 10933–10938.
[38]  Moscardo, E.; Maurin, A.; Dorigatti, R.; Champeroux, P.; Richard, S. An optimised methodology for the neurobehavioural assessment in rodents. J. Pharmacol. Toxicol. Methods 2007, 56, 239–255, doi:10.1016/j.vascn.2007.03.007.
[39]  Rogers, D.C.; Fisher, E.M.; Brown, S.D.; Peters, J.; Hunter, A.J.; Martin, J.E. Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm. Genome 1997, 8, 711–713, doi:10.1007/s003359900551.
[40]  Bailey, K.R.; Rustay, N.R.; Crawley, J.N. Behavioral phenotyping of transgenic and knockout mice: Practical concerns and potential pitfalls. ILAR J. 2006, 47, 124–131.
[41]  Crawley, J.N. Behavioral phenotyping of transgenic and knockout mice: Experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res. 1999, 835, 18–26, doi:10.1016/S0006-8993(98)01258-X.
[42]  Crawley, J.N. Mouse behavioral assays relevant to the symptoms of autism. Brain Pathol. 2007, 17, 448–459, doi:10.1111/j.1750-3639.2007.00096.x.
[43]  Roullet, F.I.; Crawley, J.N. Mouse models of autism: Testing hypotheses about molecular mechanisms. Curr. Top. Behav. Neurosci. 2011, 7, 187–212, doi:10.1007/7854_2010_113.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133