Evidence based on molecular clocks, together with molecular evidence/biomarkers and putative body fossils, points to major evolutionary events prior to and during the intense Cryogenian and Ediacaran glaciations. The glaciations themselves were of global extent. Sedimentological evidence, including hummocky cross-stratification (representing ice-free seas affected by intra-glacial storms), dropstone textures, microbial mat-bearing ironstones, ladderback ripples, and wave ripples, militates against a “hard” Snowball Earth event. Each piece of sedimentological evidence potentially allows insight into the shape and location, with respect to the shoreline, of ice-free areas (“oases”) that may be viewed as potential refugia. The location of such oases must be seen in the context of global paleogeography, and it is emphasized that continental reconstructions at 600 Ma (about 35 millions years after the “Marinoan” ice age) are non-unique solutions. Specifically, whether continents such as greater India, Australia/East Antarctica, Kalahari, South and North China, and Siberia, were welded to a southern supercontinent or not, has implications for island speciation, faunal exchange, and the development of endemism.
Hoffman, P.F.; Schrag, D.P. The snowball Earth hypothesis: Testing the limits of global change. Terra Nova 2002, 14, 129–155, doi:10.1046/j.1365-3121.2002.00408.x.
[3]
Eyles, N.; Januszczak, N. Zipper-rift”: A tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma. Earth Sci. Rev. 2004, 65, 1–73, doi:10.1016/S0012-8252(03)00080-1.
Harland, W.B. Origins and assessment of snowball Earth hypotheses. Geol. Mag. 2007, 144, 633–642, doi:10.1017/S0016756807003391.
[6]
Earth’s Pre-Pleistocene Glacial Record; Hambrey, M.J., Harland, W.B., Eds.; Cambridge University Press: Cambridge, UK, 1981; p. 1004.
[7]
Kirschvink, J.L. Late Proterozoic low-latitude glaciation: The Snowball Earth. In The Proterozoic Biosphere; Schopf, J.W., Klein, C., Eds.; Cambridge University Press: Cambridge, UK, 1992; pp. 51–52.
[8]
Scotese, C.R. Late Proterozoic plate tectonics and palaeogeography: A tale of two supercontinents, Rodinia and Pannotia. Geol. Soc. 2009, 326, 67–83.
[9]
Fairchild, I.J.; Kennedy, M.J. Neoproterozoic glaciation in the earth system. J. Geol. Soc. Lond. 2007, 164, 895–921, doi:10.1144/0016-76492006-191.
[10]
Vincent, W.F.; Gibson, J.A.E.; Pienitz, R.; Villeneuve, V.; Broady, P.A.; Hamilton, P.B.; Howard-Williams, C. Ice shelf microbial ecosystems in the high arctic and implications for life on snowball Earth. Naturwissenschaften 2000, 87, 137–141, doi:10.1007/s001140050692.
[11]
McKay, C.P. Thickness of tropical ice and photosynthesis on a snowball Earth. Geophys. Res. Lett. 2000, 27, 2153–2156, doi:10.1029/2000GL008525.
[12]
Olcott, A.N.; Sessions, A.L.; Corsetti, F.A.; Kaufman, A.J.; de Oliviera, T.F. Biomarker evidence of photosynthesis during Neoproterozoic glaciation. Science 2005, 310, 471–473, doi:10.1126/science.1115769.
[13]
Pollard, D.P.; Kasting, J.F. Snowball Earth: a thin-ice solution with flowing sea glaciers. J. Geophys. Res. 2005, C07010, doi:10.1029/2004JC002525.
[14]
Tajika, E. Faint young sun and the global carbon cycle: Implications for the Proterozoic global glaciations. Earth Planet. Sci. Lett. 2003, 214, 443–453, doi:10.1016/S0012-821X(03)00396-0.
Warren, S.G.; Brandt, R.E.; Grenfell, T.C.; McKay, C.P. Snowball Earth: Ice thickness on the tropical ocean. J. Geophys. Res. 2002, 107(C10), doi:10.1029/2001JC001123.
[17]
Halverson, G.P.; Maloof, A.C.; Hoffman, P.F. The Marinoan glaciation (Neoproterozoic) in northeast Svalbard. Basin Res. 2004, 16, 297–324, doi:10.1111/j.1365-2117.2004.00234.x.
[18]
Pavlov, A.A.; Kasting, F. Mass-independent fractionation of sulfur isotopes in Archean sediments: Strong evidence for an anoxic Archean atmosphere. Astrobiology 2002, 2, 27–41, doi:10.1089/153110702753621321.
[19]
Guo, Q.; Strauss, H.; Kaufman, A.J.; Schr?der, S.; Gutzmer, J.; Wing, B.; Baker, M.A.; Bekker, A.; Jin, Q.; Kim, S-T.; et al. Reconstructing earth’s surface oxidation across the Archean-Proterozoic transition. Geology 2010, 37, 399–402.
[20]
Bao, H.; Fairchild, I.J.; Wynn, P.M.; Sp?tl, C. Stretching the envelope of past surface environments: Neoproterozoic glacial lakes from Svalbard. Science 2009, 323, 119–122, doi:10.1126/science.1165373.
[21]
Crowley, T.J.; Baum, S.K. Reconciling Late Ordovician (440 Ma) glaciation with very high (14X) CO2 levels. J. Geophys. Res. 1995, 100, 1093–1101, doi:10.1029/94JD02521.
[22]
Canfield, D.E.; Poulton, S.W.; Narbonne, G.M. Late-neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 2007, 315, 92–95, doi:10.1126/science.1135013.
[23]
Och, L.; Shields-Zhou, G.A. The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling. Earth Sci. Rev. 2012, 110, 26–57, doi:10.1016/j.earscirev.2011.09.004.
[24]
Walter, M.R.; Heys, G.R. Links between the rise of the Metazoa and the decline of stromatolites. Precambrian Res. 1985, 29, 149–174, doi:10.1016/0301-9268(85)90066-X.
[25]
Grotzinger, J.P. Geochemical model for Proterozoic stromatolite decline. Am. J. Sci. 1990, 290, 80–103.
[26]
Javaux, E.J.; Marshall, C.P.; Bekker, A. Organic-walled microfossils in 3.2 billion year old shallow marine siliciclastic deposits. Nature 2010, 463, 934–938, doi:10.1038/nature08793.
[27]
Knoll, A.H. Proterozoic and Early Cambrian protists: evidence for accelerating evolutionary tempo. Proc. Natl. Acad. Sci. USA 1994, 91, 6743–6750, doi:10.1073/pnas.91.15.6743.
[28]
Huntley, J.W.; Shuhai, S.; Kowalewski, M. 1.3 Billion years of acritarch history: An empirical morphospace approach. Precambrian Res. 2006, 144, 52–68, doi:10.1016/j.precamres.2005.11.003.
[29]
Grey, K. Ediacaran palynology of Australia. Mem. Assoc. Australas. Palaeontologists 2005, 31, 1–439.
[30]
Runnegar, B. Loophole for Snowball Earth. Nature 2000, 405, 403–404, doi:10.1038/35013168.
Bowring, S.; Myrow, P.; Landing, E.; Ramezani, J.; Grotzinger, J. Geochronological constraints on terminal Neoproterozoic events and the rise of metazoans. Geophys. Res. Abstr. 2003, 5, 219.
[33]
Peterson, K.J.; McPeek, M.A.; Evans, D.A.D. Tempo and mode of early animal evolution: Inferences from rocks, Hox, and molecular clocks. Paleobiology 2005, 31, 36–55, doi:10.1666/0094-8373(2005)031[0036:TAMOEA]2.0.CO;2.
[34]
Butterfield, N.J.; Knoll, A.H.; Swett, K. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Foss. Strata 1994, 34, 1–84.
[35]
Chen, J.-Y.; Bottjer, D.J.; Davidson, E.H.; Dornbos, S.Q.; Gao, X.; Yang, Y.-H.; Li, C.-W.; Li, G.; Wang, X.-Q.; Xian, D.-C.; et al. Phosphatized polar lobe-forming embryos from the Precambrian of southwest China. Science 2006, 312, 1644–1646.
[36]
Butterfield, N.J. A vaucherian alga from the middle Neoproterozoic of Spitsbergen: Implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion. Paleobiology 2004, 30, 231–252, doi:10.1666/0094-8373(2004)030<0231:AVAFTM>2.0.CO;2.
[37]
Meert, J.G.; Gibsher, A.S.; Levashova, N.M.; Grice, W.C.; Kamenov, G.D.; Rybanin, A. Glaciation and ~770 Ma Ediacara (?) fossils from the lesser Karatau microcontinent, Kazakhstan. Gondwana Res. 2000, 19, 867–880.
[38]
Maloof, A.C.; Rose, C.V.; Beach, R.; Samuels, B.M.; Calmet, C.C.; Erwin, D.H.; Poirier, G.R.; Yao, N.; Simons, F.J. Possible animal-body fossils in pre-Marinoan limestones from south Australia. Nature Geosci. 2010, 3, 653–659, doi:10.1038/ngeo934.
[39]
Brain, C.K.; Prave, A.R.; Hoffmann, K.-H.; Fallick, A.E.; Botha, A.; Herd, D.A.; Sturrock, C.; Young, I.; Condon, D.J.; Allison, S.J. The first animals: ca. 760-million-year-old sponge-like fossils from Namibia. South Afr. J. Earth Sci. 2012, 108, doi:10.4102/sajs.v108i1/2.658.
[40]
Bosak, T.; Lahr, D.J.G.; Pruss, S.B.; Macdonald, F.A.; Gooday, A.J.; Dalton, L.; Matys, E.D. Possible early foraminiferans in post-Sturtian (716?635 Ma) cap carbonates. Geology 2012, 40, 67–70, doi:10.1130/G32535.1.
[41]
Chen, J.-Y.; Bottjer, D.J.; Oliveri, P.; Dornbos, S.Q.; Gao, F.; Ruffins, S.; Chi, H.; Li, C.-W.; Davidson, E.H. Small bilaterian fossils from 40 to 55 million years before the Cambrian. Science 2004, 305, 218–222.
[42]
Hagadorn, J.W.; Xiao, S.; Donoghue, P.C.J.; Bengtson, S.; Gostling, N.J.; Pawlowska, M.; Raff, E.C.; Raff, R.A.; Rudolf Turner, F.; Chongyu, Y.; et al. Cellular and subcellular structure of Neoproterozoic animal embryos. Science 2006, 314, 291–294.
[43]
Xiao, S.; Hagadorn, J.W.; Zhou, C.; Yuan, X. Rare helical spheroidal fossils from the Doushantuo Lagerst?tte: Ediacaran animal embryos come of age? Geology 2007, 35, 115–118, doi:10.1130/G23277A.1.
Huldtgren, T.; Cunningham, J.A.; Yin, C.; Stampanoni, M.; Marone, F.; Donoghue, P.C.J.; Bengtson, S. Fossilized nuclei and germination structures identify Ediacaran “Animal Embryos” as encysting protists. Science 2011, 334, 1696–1699.
[46]
Schopf, J.W.; Kudryavtsev, A.B.; Sugitanid, K.; Waltere, M.R. Precambrian microbe-like pseudofossils: A promising solution to the problem. Precambrian Res. 2010, 179, 191–205, doi:10.1016/j.precamres.2010.03.003.
[47]
Hoffmann, K.H.; Condon, D.J.; Bowring, S.A.; Crowley, J.L. U-Pb zircon date from the Neoproterozoic Ghaub formation, Namibia: constraints on Marinoan glaciation. Geology 2004, 32, 817–820, doi:10.1130/G20519.1.
[48]
Wray, G.A.; Levinton, J.S.; Shapiro, L.H. Molecular evidence for deep Precambrian divergences among metazoan phyla. Science 1996, 274, 568–573, doi:10.1126/science.274.5287.568.
[49]
Babinski, M.; Vieira, L.C.; Trindade, R.I.F. Direct dating of the Sete Lagoas cap carbonate (Bambuí Group, Brazil) and implications for the Neoproterozoic glacial events. Terra Nova 2007, 19, 401–406, doi:10.1111/j.1365-3121.2007.00764.x.
[50]
Summons, R.E.; Jahnke, L.L.; Hope, J.M.; Logan, G.A. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 1999, 400, 554–556.
[51]
Summons, R.E.; Powell, T.G. Identification of aryl isoprenoids in source rocks and crude oils: Biological markers for the green sulfur bacteria. Geochim. Cosmochim. Acta. 1987, 51, 557–566, doi:10.1016/0016-7037(87)90069-X.
[52]
Ten Haven, H.L.; Rohmer, M.; Rullkoetter, J.; Bisseret, P. Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments. Geochim. Cosmochim. Acta. 1989, 53, 3073–3079, doi:10.1016/0016-7037(89)90186-5.
[53]
Love, G.D.; Grosjean, E.; Stalvies, C.; Fike, D.; Grotzinger, J.P.; Bradley, A.S.; Kelly, A.E.; Bhatia, M.; Meredith, W.; Snape, C.E.; et al. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 2009, 457, 718–721.
[54]
Delabroye, A.; Vecoli, M. The end-Ordovician glaciation and the Hirnantian Stage: A global review and questions about Late Ordovician event stratigraphy. Earth Sci. Rev. 2010, 98, 269–282, doi:10.1016/j.earscirev.2009.10.010.
[55]
Brenchley, P.J.; Carden, G.A.; Hints, L.; Kaljo, D.; Marshall, J.D.; Martma, T.; Meidla, T.; N?lvak, J. High-resolution stable isotope stratigraphy of upper Ordovician sequences: constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation. Geol. Soc. Am. Bull. 2003, 115, 89–104.
[56]
Sutcliffe, O.E.; Dowdeswell, J.A.; Whittington, R.J.; Theron, J.N.; Craig, J. Calibrating the Late Ordovician glaciation and mass extinction by the eccentricity cycles of the Earth’s orbit. Geology 2000, 23, 967–970.
[57]
Brenchley, P.J.; Marshall, J.D.; Underwood, C.J. Do all mass extinctions represent an ecological crisis? Evidence from the Late Ordovician. Geol. J. 2001, 36, 329–340, doi:10.1002/gj.880.
[58]
Craig, J.; Thurow, J.; Thusu, B.; Whitham, A.; Abutarruma, Y. Global Neoproterozoic petroleum systems: the emerging potential in North Africa. In Global Neoproterozoic Petroleum Systems: The Emerging Potential in North Africa; Craig, J., Thurow, J., Thusu, B., Whitham, A., Abutarruma, Y., Eds.; Geological Society, Special Publications: London, UK, 2007; Volume 326, pp. 1–25.
[59]
Butterfield, N.J.; Chandler, F.W. Paleoenvironmental distribution of Proterozoic microfossils, with an example from the Agu Bay Formation, Baffin Island. Palaeontology 1992, 35, 943–957.
Bell, R.E.; Studinger, M.; Shuman, C.A.; Fahnestock, M.A.; Joughin, I. Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams. Nature 2000, 445, 904–907.
[68]
Vasiliev, N.I.; Talalay, P.G.; Bobin, N.E.; Chistyakov, V.K.; Zubkov, V.M.; Krasilev, A.V.; Dmitriev, A.N.; Yankilevich, S.V.; Lipenkov, V.Y. Deep drilling at Vostok station, Antarctica: history and recent events. Ann. Glaciol. 2007, 47, 10–23, doi:10.3189/172756407786857776.
[69]
Karl, D.M.; Bird, D.F.; Bj?rkman, K.; Houlihan, T.; Shackelford, R.; Tupas, L. Microorganisms in the accreted ice of lake Vostok, Antarctica. Science 1999, 286, 2144–2147.
[70]
Moreau, J. The Late Ordovician deglaciation sequence of the SW Murzuq Basin (Libya). Basin Res. 2011, 23, 449–477, doi:10.1111/j.1365-2117.2010.00499.x.
[71]
Hoffman, P.F. On Cryogenian (Neoproterozoic) ice-sheet dynamics and the limitations of the glacial sedimentary record. S. Afr. J. Geol. 2005, 108, 557–576, doi:10.2113/108.4.557.
[72]
Le Heron, D.P.; Cox, G.M.; Trundley, A.E.; Collins, A. Sea-ice free conditions during the early Cryogenian (Sturt) glaciation, south Australia. Geology 2011, 39, 31–34, doi:10.1130/G31547.1.
[73]
Leather, J.; Allen, P.A.; Brasier, M.D.; Cozzi, A. Neoproterozoic snowball Earth under scrutiny: evidence from the Fiq glaciation of Oman. Geology 2002, 30, 891–894, doi:10.1130/0091-7613(2002)030<0891:NSEUSE>2.0.CO;2.
Van Loon, A.J. Could “snowball Earth” have left thick glaciomarine deposits? Gondwana Res. 2008, 14, 73–81, doi:10.1016/j.gr.2007.05.009.
[76]
Etienne, J.L.; Allen, P.A.; Rieu, R.; Le Guerroué, E. Neoproterozoic glaciated basins: A critical review of the snowball Earth hypothesis by comparison with Phanerozoic glaciations. In Glacial Processes and Products, Special Publication 39 of the IAS; Hambrey, M.J., Christoffersen, P., Glasser, N.F., Hubbard, B., Eds.; Wiley-Blackwell: London, UK, 2007; pp. 343–399.
[77]
Fairchild, I.J.; Hambrey, M.J. The Vendian succession of northeastern Spitsbergen: petrogenesis of a dolomite-tillite association. Precambrian Res. 1984, 26, 111–167, doi:10.1016/0301-9268(84)90042-1.
[78]
Hoffman, P.F.; Halverson, G.P.; Domack, E.W.; Maloof, A.C.; Swanson-Hysell, N.L.; Cox, G.M. Cryogenian glaciations on the southern tropical paleomargin of Laurentia (NE Svalbard and East Greenland), and a primary origin for the upper Russ?ya (Islay) carbon isotope excursion. Precambrian Res. 2012, 206–207, 137–158.
[79]
Brake, S.S.; Hasiotis, S.T.; Dannelly, H.K.; Connors, K.A. Eukaryotic stromatolite builders in acid mine drainage: Implications for Precambrian iron formations and oxygenation of the atmosphere? Geology 2002, 30, 599–602, doi:10.1130/0091-7613(2002)030<0599:ESBIAM>2.0.CO;2.
Howchin, W. Glacial beds of Cambrian age in south Australia. J. Geol. Soc. Lond. 1908, 64, 234–259, doi:10.1144/GSL.JGS.1908.064.01-04.13.
[85]
Sprigg, R.C. The geology of the Eden-Moana fault block. T. Roy. Soc. South Aust. 1942, 66, 185–214.
[86]
Mawson, D. The Elatina glaciation. A third occurrence of glaciation evidenced in the Adelaide system. T. Roy. Soc. South Aust. 1949, 73, 117–121.
[87]
Dumas, S.; Arnott, R.W.C. Origin of hummocky and swaley cross-stratification—The controlling influence of unidirectional current strength and aggradation rate. Geology 2006, 34, 1073–1076, doi:10.1130/G22930A.1.
[88]
The Geoplogical Record of Neoproterozoic Glaciations; Arnaud, E., Halverson, G.P., Shields-Zhou, G., Eds.; Geological Society: London, UK, 2012; p. 735. Memoir No. 36.
[89]
Le Heron, D.P. The Cryogenian record of glaciation and deglaciation in south Australia. Sed. Geol. 2012, 243–244, 57–69, doi:10.1016/j.sedgeo.2011.09.013.
[90]
Le Heron, D.P.; Cox, G.M.; Trundley, A.E.; Collins, A.S. Two Cryogenian glacial successions compared: aspects of the sturt and Elatina sediment records of south Australia. Precambrian Res. 2011, 186, 147–168, doi:10.1016/j.precamres.2011.01.014.
[91]
Arnaud, A. Giant cross-beds in the Neoproterozoic Port Askaig Formation, Scotland: Implications for Snowball Earth. Sediment. Geol. 2004, 165, 155–174, doi:10.1016/j.sedgeo.2003.11.015.
[92]
Boyle, R.A.; Lenton, T.M.; Williams, H.T.P. Neoproterozoic “Snowball Earth” glaciations and the evolution of altruism. Geobiology 2007, 5(4), 337–349, doi:10.1111/j.1472-4669.2007.00115.x.