Many paleontologists have noticed the broadly similar patterns between the changes in Cenozoic mammalian diversity and taxonomic dominance and climate changes. Yet detailed studies of fossil population samples with fine-scale temporal resolution during episodes of climate change like the Eocene-Oligocene transition in the White River Group, and the late Pleistocene at Rancho La Brea tar pits, demonstrates that most fossil mammal species are static and show no significant microevolutionary response to major climate changes. This mismatch between patterns seems best explained by species sorting. As the punctuated equilibrium model demonstrated, over long time spans most fossil species are stable and do not respond to climate change. Instead, change occurs at the next hierarchical level, with species sorting adding and subtracting to the total diversity pattern revealed by coarse-scale taxon counting, apparently responding to longer-term changes in climate as revealed by proxies like the oxygen isotope record.
References
[1]
Osborn, H.F. The Age of Mammals in Europe, Asia, and North America; Macmillan: New York, NY, USA, 1910.
[2]
Stirton, R.A. Phylogeny of North American Equidae. Univ. CA Bull. Dep. Geol. Sci. 1940, 25, 165–198.
[3]
Simpson, G.G. Horses: The Story of the Horse Family in the Modern World and through Sixty Million Years; Oxford University Press: Oxford, UK, 1951.
[4]
Webb, S.D. A history of savanna vertebrates in the New World. Part I: North America. Annu. Rev. Ecol. Syst. 1977, 8, 355–380.
[5]
Webb, S.D. Ten million years of mammalian extinctions in North America. In Quaternary Extinctions; Martin, P.S., Klein, R.G., Eds.; University of Arizona Press: Tucson, AZ, USA, 1984; pp. 189–210.
[6]
Janis, C.M. A climatic explanation for patterns of evolutionary diversity in ungulate mammals. Palaeontology 1989, 32, 463–481.
[7]
Janis, C.M. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu. Rev. Ecol. Syst. 1993, 24, 467–500.
[8]
Janis, C.M. Ungulate teeth, diets and climate changes at the Eocene/Oligocene. Zool. Anal. Complex Syst. 1997, 100, 203–220.
[9]
Vrba, E.S. Environment and evolution: Alternative causes of temporal distribution of evolutionary events. S. Afr. J. Sci. 1985, 81, 229–236.
[10]
Vrba, E.S. Turnover-pulses, the Red Queen, and related topics. Am. J. Sci. 1993, 293A, 418–452, doi:10.2475/ajs.293.A.418.
[11]
Van Dam, J.A.; Abdul Aziz, H.; Alvarez Sierra, M.A.; Hilgen, F.J.; Ostende, L.V.H.; Lourens, L.J.; Mein, P.; van der Meulen, A.J.; Pelaez-Campomanes, P. Long-period astronomical forcing of mammalian turnover. Nature 2006, 443, 687–691.
[12]
Badgley, C.; Barry, J.C.; Morgan, M.E.; Nelson, S.V.; Behrensmeyer, A.K.; Cerling, T.E.; Pilbeam, D. Ecological changes in Miocene mammalian record show impact of prolonged climatic forcing. Proc. Natl. Acad. Sci. USA 2008, 105, 12145–12149.
[13]
De Santis, L.R.; Feranec, R.S.; MacFadden, B.J. Effects of global warming on ancient mammalian communities and their environments. PLoS One 2009, 4, e5750.
[14]
Woodburne, M.O.; Gunnell, G.F.; Stucky, R.K. Climate directly influences Eocene mammal faunal dynamics in North America. Proc. Natl. Acad. Sci. USA 2009, 106, 13399–13403.
Blois, J.L.; McGuire, J.L.; Hadly, E.A. Small mammal diversity loss in response to Late-Pleistocene climatic change. Nature 2010, 465, 771–774, doi:10.1038/nature09077.
[17]
Figueirido, B.; Janis, C.M.; Perez-Claros, J.A.; de Renzi, M.; Palmqvist, P. Cenozoic climate change influences mammalian evolutionary dynamics. Proc. Natl. Acad. Sci. USA 2011, doi:10.1073/pnas.1110246108.
[18]
Secord, R.; Bloch, J.I.; Chester, S.G.B.; Boyer, D.M.; Wood, A.R.; Wing, S.L.; Kraus, M.J.; McInerney, F.A.; Krigbaum, J. Evolution of the earliest horses driven by climate change in the Paleocene-Eocene thermal maximum. Science 2012, 335, 959–962.
[19]
Alroy, J. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1996, 127, 285–311, doi:10.1016/S0031-0182(96)00100-9.
[20]
Alroy, J. Equilibrial diversity dynamics in North American mammals. In Biodiversity Dynamics: Turnover of Populations, Taxa, and Communities; McKinney, M.L., Drake, J.A., Eds.; Columbia University Press: New York, NY, USA, 1998; pp. 232–287.
[21]
Alroy, J.; Koch, P.L.; Zachos, J.C. Global climate change and North American mammalian evolution. Paleobiology 2000, 26, 259–288, doi:10.1666/0094-8373(2000)26[259:GCCANA]2.0.CO;2.
[22]
Paleobiology Database. Available online: http://paleodb.org/cgi-bin/bridge.pl (accessed on 9 March 2012).
[23]
Prothero, D.R.; Heaton, T.H. Faunal stability during the early Oligocene climatic crash. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1996, 127, 239–256, doi:10.1016/S0031-0182(96)00098-3.
Eocene-Oligocene Climatic and Biotic Evolution; Prothero, D.R., Berggren, W.A., Eds.; Princeton University Press: Princeton, NJ, USA, 1992.
[26]
Prothero, D.R. The Eocene-Oligocene Transition: Paradise Lost; Columbia University Press: New York, NY, USA, 1994.
[27]
From Greenhouse to Icehouse: The Marine Eocene-Oligocene Transition; Prothero, D.R., Ivany, L.C., Nesbitt, E.A., Eds.; Columbia University Press: New York, NY, USA, 2003.
[28]
Prothero, D.R. After the Dinosaurs: The Age of Mammals; Indiana University Press: Bloomington, IN, USA, 2006.
[29]
Retallack, G.J. Late Eocene and Oligocene paleosols from Badlands National Park, South Dakota. Geological Society of America Special Paper. Geological Society of America: Boulder, CO, USA, 1983. No. 193.
[30]
Evanoff, E.; Prothero, D.R.; Lander, R.H. Eocene-Oligocene climatic change in North America: The White River formation near Douglas, East-Central Wyoming. In Eocene-Oligocene Climatic and Biotic Evolution; Prothero, D.R., Berggren, W.A., Eds.; Princeton University Press: Princeton, NJ, USA, 1982; pp. 116–130.
[31]
Zanazzi, A.; Kohn, M.J.; MacFadden, B.J.; Terry, D.O., Jr. Large temperature drop across the Eocene-Oligocene transition in central North America. Nature 2007, 445, 639–642, doi:10.1038/nature05551.
[32]
Prothero, D.R.; Whittlesey, K.E. Magnetostratigraphy and biostratigraphy of the Orellan and Whitneyan land mammal “ages” in the White River Group. Geol. Soc. Am. Spec. Paper 1998, 325, 39–61.
[33]
The Terrestrial Eocene-Oligocene Transition in North America; Prothero, D.R., Emry, R.J., Eds.; Cambridge University Press: Cambridge, UK, 1996.
[34]
Hutchison, J.H. Turtle, crocodilian and champsosaur diversity changes in the Cenozoic of the north-central region of the western United States. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1982, 37, 149–164, doi:10.1016/0031-0182(82)90037-2.
[35]
Hutchison, J.H. Western North American reptile and amphibian record across the Eocene/Oligocene boundary and its climatic implications. In Eocene-Oligocene Climatic and Biotic Evolution; Prothero, D.R., Berggren, W.A., Eds.; Princeton University Press: Princeton, NJ, USA, 1982; pp. 451–463.
[36]
Wolfe, J.A. Tertiary climatic fluctuations and methods of analysis of Tertiary floras. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1971, 9, 27–57.
[37]
Wolfe, J.A. A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere. Am. Sci. 1978, 66, 694–703.
[38]
Wolfe, J.A. Climatic, floristic, and vegetational changes near the Eocene/Oligocene boundary in North America. In Eocene-Oligocene Climatic and Biotic Evolution; Prothero, D.R., Berggren, W.A., Eds.; Princeton University Press: Princeton, NJ, USA, 1998; pp. 421–436.
Prothero, D.R. Magnetic stratigraphy of the Eocene-Oligocene floral transition in western North America. Geol. Soc. Am. Spec. Paper 2008, 435, 71–87.
[41]
Swisher, C.C., III; Prothero, D.R. Single-crystal 40Ar/39Ar dating of the Eocene-Oligocene transition in North America. Science 1990, 249, 760–762.
[42]
Prothero, D.R.; Swisher, C.C., III. Magnetostratigraphy and geochronology of the terrestrial Eocene-Oligocene transition in North America. In Eocene-Oligocene Climatic and Biotic Evolution; Prothero, D.R., Berggren, W.A., Eds.; Princeton University Press: Princeton, NJ, USA, 1992; pp. 46–73.
[43]
Dewar, E. The taxonomic stability of larger mammals in the White River Chronofauna masked their changing dietary ecology. J. Vertebr. Paleontol. 2007, 27, 68A.
[44]
Falconer, H. On the American fossil elephant. Nat. Hist. Rev. 1863, 43–114.
[45]
Bennett, K.D. Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology 1990, 16, 11–21.
[46]
Bennett, K.D. Evolution and Ecology: The Pace of Life; Cambridge University Press: Cambridge, UK, 1997.
[47]
Barnosky, A.D. Defining climate’s role in ecosystem evolution: Clues from late Quaternary mammals. Hist. Biol. 1994, 18, 173–190, doi:10.1080/10292389409380476.
[48]
Barnosky, A.D. Effects of Quaternary climatic change on speciation of mammals. J. Mamm. Evol. 2005, 12, 247–264, doi:10.1007/s10914-005-4858-8.
[49]
Barnosky, A.D.; Kraatz, B.P. The role of climate change in the evolution of mammals. BioScience 2007, 57, 523–532, doi:10.1641/B570615.
[50]
Lister, A.M. The impact of Quaternary Ice Ages on mammalian evolution. Philos. Trans. R. Soc. Lond. 2004, B359, 221–241, doi:10.1098/rstb.2003.1436.
[51]
Kadereit, J.W.; Griebeler, E.M.; Comes, H.P. Quaternary diversification in Alpine plants: Pattern and process. Philos. Trans. R. Soc. Lond. 2004, B359, 265–274.
[52]
McKinnon, G.E.; Jordan, G.J.; Vaillancourt, R.E.; Steane, D.A.; Potts, B.M. Glacial refugia and reticulate evolution: The case of the Tasmanian Eucalypts. Philos. Trans. R. Soc. Lond. 2004, B359, 257–284.
[53]
Willis, K.J.; Niklas, K.J. The role of Quaternary environmental change on plant macroevolution: The exception or the rule? Philos. Trans. R. Soc. Lond. 2004, B359, 159–172.
[54]
Avise, J.C.; Walker, D.; Johns, G.C. Species durations and Pleistocene effects on vertebrate phylogeography. Proc. R. Soc. Lond. 1998, B265, 1707–1712.
[55]
Klicka, J.; Zink, R.M. Pleistocene effects on North American songbird evolution. Proc. R. Soc. Lond. 1999, B266, 695–700.
[56]
Zink, R.M.; Klicka, J.; Barber, B.R. The tempo of avian diversification during the Quaternary. Philos. Trans. R. Soc. Lond. 2004, B359, 215–220.
[57]
Holman, J.A. Pleistocene Reptiles and Amphibians in North America; Oxford University Press: Oxford, UK, 1995.
[58]
Coope, G.R. Late Cenozoic fossil Coleoptera: Evolution, biogeography, and ecology. Annu. Rev. Ecol. Syst. 1979, 10, 247–267.
[59]
McGill, B.J.; Hadly, E.A.; Maurer, B.A. Community inertia of Quaternary small mammal assemblages in North America. Proc. Natl. Acad. Sci. USA 2005, 102, 16701–16706, doi:10.1073/pnas.0504225102.
[60]
Prothero, D.R.; Syverson, V.J.; Raymond, K.R.; Madan, M.; Molina, S.; Fragomeni, A.; DeSantis, S.; Sutyagina, A.; Gage, G.L. Shape and size stasis in Late Pleistocene mammals and birds from Rancho La Brea during the last glacial-interglacial cycle. Quat. Sci. Rev. 2012. in press.
[61]
Ward, J.W.; Harris, J.M.; Cerling, T.E.; Wiedenhoeft, A.; Lott, M.J.; Dearing, M.; Coltrain, J.B.; Ehleringer, J.R. Carbon starvation in glacial trees recovered from the La Brea tar pits, southern California. Proc. Natil. Acad. Sci. USA 2005, 102, 690–694, doi:10.1073/pnas.0408315102.
[62]
Coltrain, J.B.; Harris, J.M.; Cerling, T.E.; Ehleringer, J.R.; Dearing, M.; Ward, J.; Allen, J. Rancho La Brea stable isotope biogeochemistry and its implications for the palaeoecology of the Late Pleistocene, coastal southern California. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 205, 199–219, doi:10.1016/j.palaeo.2003.12.008.
[63]
Warter, J.K. Late Pleistocene plant communities—Evidence from Rancho La Brea tar pits. Symposium proceedings on the plant communities of southern California. Nativ. Plant Soc. Spec. Publ. 1976, 2, 32–39.
[64]
Heusser, L. Direct correlation of millennial-scale changes in western North American vegetation and climate with changes in the California current system over the past 60 kyr. Paleoceanography 1998, 13, 252–262, doi:10.1029/98PA00670.
[65]
Madan, M.; Prothero, D.R.; Sutyagina, A. Did felids from Rancho La Brea change size or shape in the last Pleistocene? New Mexico Mus. Nat. Hist. Bull. 2011, 53, 554–563.
[66]
Linden, E. Morphological response of dire wolves (Canis dirus) of Rancho la Brea over time due to climate changes. J. Vertebr. Paleontol. 2011, 31, 144.
[67]
Prothero, D.R.; Raymond, K.R. Stasis in Late Pleistocene ground sloths (Paramylodon harlani) from Rancho La Brea, California. New Mexico Mus. Nat. Hist. Bull. 2011, 53, 624–628.
[68]
Raymond, K.R.; Prothero, D.R. Did climate change affect size in Late Pleistocene bison? New Mexico Mus. Nat. Hist. Bull. 2011, 53, 636–640.
[69]
DeSantis, S.N.; Prothero, D.R.; Gage, G.L. Size and shape stasis in Late Pleistocene horses and camels from Rancho La Brea during the last glacial-interglacial cycle. New Mexico Mus. Nat. Hist. Bull. 2011, 53, 505–510.
[70]
Marcus, L.F.; Berger, R. The significance of radiocarbon dates for Rancho La Brea. In Quaternary Extinctions: A Prehistoric Revolution; Martin, P.S., Klein, R.G., Eds.; University of Chicago Press: Chicago, IL, USA, 1984; pp. 159–188.
[71]
O’Keefe, F.R.; Fet, E.V.; Harris, J.M. Compilation, calibration, and synthesis of faunal and floral radiocarbon dates, Rancho la Brea, California. Contrib. Sci., Nat. Hist. Mus. LA Cty. 2009, 518, 1–16.
[72]
Syverson, V.J.; Prothero, D.R. Evolutionary patterns in Late Quaternary California condors. PalArch’s J. Vertebr. Paleontol. 2009, 7, 1–18.
[73]
Molina, S.; Prothero, D.R. Evolutionary stasis in Late Pleistocene golden eagles. New Mexico Mus. Nat. Hist. Bull. 2011, 53, 564–569.
[74]
Fragomeni, A.; Prothero, D.R. Stasis in Late Quaternary birds from the La Brea tar pits during the last glacial-interglacial cycle. New Mexico Mus. Nat. Hist. Bull. 2011, 53, 511–516.
[75]
O’Keefe, F.R. Population-level response of the dire wolf, Canis dirus, to climate change in the Upper Pleistocene. J. Vertebr. Paleontol. 2008, 28, 122A.
[76]
O’Keefe, F.R. Craniodental measures of dire wolf population health imply rapid extinction in the Los Angeles Basin. J. Vertebr. Paleontol. 2010, 30, 141A.
[77]
Eldredge, N.; Gould, S.J. Punctuated equilibria: An alternative to phyletic gradualism. In Models in Paleobiology; Schopf, T.J.M., Ed.; Freeman: San Francisco, CA, USA, 1972; pp. 82–115.
[78]
Jackson, J.B.C.; Cheetham, A.H. Tempo and mode of speciation in the sea. Trends Ecol. Evol. 1999, 14, 72–77, doi:10.1016/S0169-5347(98)01504-3.
[79]
Gould, S.J. The Structure of Evolutionary Theory; Harvard University Press: Cambridge, MA, USA, 2002.
[80]
Jablonski, D. Micro- and macroevolution: Scale and hierarchy in evolutionary biology and paleobiology. Paleobiology 2000, 26, 15–52, doi:10.1666/0094-8373(2000)26[15:MAMSAH]2.0.CO;2.
[81]
Jablonski, D. Species selection: Theory and data. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 501–524, doi:10.1146/annurev.ecolsys.39.110707.173510.
[82]
Geary, D.H. The legacy of punctuated equilibrium. In Stephen Jay Gould: Reflections on His View of Life; Allmon, W.D., Kelley, P.H., Ross, R.M., Eds.; Oxford University Press: Oxford, UK, 2009; pp. 127–147.
[83]
Hallam, A. The problem of punctuational speciation and trends in the fossil record. In the Paleobiological Revolution; Ruse, M., Sepkoski, D., Eds.; University of Chicago Press: Chicago, IL, USA, 2009; pp. 423–432.
[84]
Princehouse, P. Punctuated equilibrium and speciation: What does it mean to be a Darwinian? In Paleobiological Revolution; Ruse, M., Sepkoski, D., Eds.; University of Chicago Press: Chicago, IL, USA, 2009; pp. 149–175.
[85]
The Paleobiological Revolution; Ruse, M., Sepkoski, D., Eds.; University of Chicago Press: Chicago, IL, USA, 2009.
[86]
Gilinsky, N. Species selection as a causal process. Evol. Biol. 1986, 20, 249–273.
[87]
Vrba, E.S.; Gould, S.J. The hierarchical expansion of sorting and selection: Sorting and selection cannot be equaled. Paleobiology 1986, 12, 217–228.
[88]
Eronen, J.T.; Rook, L. The Mio-Pliocene European primate fossil record: Dynamics and habitat tracking. J. Hum. Evol. 2004, 47, 323–341, doi:10.1016/j.jhevol.2004.08.003.
[89]
Raia, P.; Passaro, F.; Carotenuto, F. Habitat tracking, stasis, and survival in Neogene large mammals. Biol. Lett. 2102, 8, 64–66.
[90]
Van der Meulen, A.J.; Pelaez-Campomanes, P.; Levin, S.A. Age structure, residents, and transients of Miocene rodent communities. Am. Nat. 2005, 165, E108–E125, doi:10.1086/428683.
[91]
Jernvall, J.; Fortelius, M. Maintenance of trophic structure in fossil mammal communities: Site occupancy and taxon resilience. Am. Nat. 2004, 164, 614–624, doi:10.1086/424967.