全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Geosciences  2012 

Homology and Potential Cellular and Molecular Mechanisms for the Development of Unique Feather Morphologies in Early Birds

DOI: 10.3390/geosciences2030157

Keywords: dinosaur integument, feathers, Mesozoic birds, Similicaudipteryx, rectrix, molecular development, Confuciusornis

Full-Text   Cite this paper   Add to My Lib

Abstract:

At least two lineages of Mesozoic birds are known to have possessed a distinct feather morphotype for which there is no neornithine (modern) equivalent. The early stepwise evolution of apparently modern feathers occurred within Maniraptora, basal to the avian transition, with asymmetrical pennaceous feathers suited for flight present in the most basal recognized avian, Archaeopteryx lithographica. The number of extinct primitive feather morphotypes recognized among non-avian dinosaurs continues to increase with new discoveries; some of these resemble feathers present in basal birds. As a result, feathers between phylogenetically widely separated taxa have been described as homologous. Here we examine the extinct feather morphotypes recognized within Aves and compare these structures with those found in non-avian dinosaurs. We conclude that the “rachis dominated” tail feathers of Confuciusornis sanctus and some enantiornithines are not equivalent to the “proximally ribbon-like” pennaceous feathers of the juvenile oviraptorosaur Similicaudipteryx yixianensis. Close morphological analysis of these unusual rectrices in basal birds supports the interpretation that they are modified pennaceous feathers. Because this feather morphotype is not seen in living birds, we build on current understanding of modern feather molecular morphogenesis to suggest a hypothetical molecular developmental model for the formation of the rachis dominated feathers of extinct basal birds.

References

[1]  Ji, Q.; Ji, S.A. On discovery of the earliest bird fossil in China and the origin of birds. Chin. Geol. 1996, 233, 30–33.
[2]  Ji, Q.; Currie, P.J.; Norell, M.A.; Ji, S.A. Two feathered dinosaurs from northeastern China. Nature 1998, 393, 753–761, doi:10.1038/31635.
[3]  Xu, X.; Zhao, Q.; Norell, M.A.; Sullivan, C.; Hone, D.W.; Erickson, G.M.; Wang, X.L.; Han, F.L.; Guo, Y. A new feathered maniraptoran dinosaur fossil that fills a morphological gap in avian origin. Chin. Sci. Bull. 2009, 54, 430–435, doi:10.1007/s11434-009-0009-6.
[4]  Xu, X.; Zheng, X.T.; You, H.L. Exceptional dinosaur fossils show ontogenetic development of early feathers. Nature 2010, 464, 1339–1341.
[5]  Zheng, X.T.; You, H.L.; Xu, X.; Dong, Z.M. An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures. Nature 2009, 458, 333–337.
[6]  Zhang, F.C.; Zhou, Z.H.; Xu, X.; Wang, X.L.; Sullivan, C. A bizarre Jurassic maniraptoran from China with elongate ribbon-like feathers. Nature 2008, 455, 1105–1108, doi:10.1038/nature07447.
[7]  Xu, X.; Wang, K.B.; Zhang, K.; Ma, Q.Y.; Xing, L.D.; Sullivan, C.; Hu, D.Y.; Cheng, S.Q.; Wang, S. A gigantic feathered dinosaur from the Lower Cretaceous of China. Nature 2012, 484, 92–95.
[8]  Chuong, C.M.; Widelitz, R.B. Feather morphogenesis: A model of the formation of epithelial appendage. In Molecular Basis of Epithelial Appendage Morphogenesis; Chuong, C.M., Ed.; Landes Bioscience: Austin, TX, USA, 1998; pp. 57–74.
[9]  Yu, M.; Wu, P.; Widelitz, R.B.; Chuong, C.M. The morphogenesis of feathers. Nature 2002, 420, 308–312, doi:10.1038/nature01196.
[10]  Harris, M.P.; Fallon, J.F.; Prum, R.O. Shh-Bmp2 signaling module and the evolutionary origin and diversification of feathers. J. Exp. Zool. B Mol. Dev. Evol. 2002, 294, 160–176, doi:10.1002/jez.10157.
[11]  Chang, C.H.; Yu, M.K.; Wu, P.; Jiang, T.X.; Yu, H.S.; Widelitz, R.B.; Chuong, C.M. Sculpting skin appendages out of epidermal layers via temporally and spatially regulated apoptotic events. J. Invest. Dermatol. 2004, 122, 1348–1355, doi:10.1111/j.0022-202X.2004.22611.x.
[12]  Prum, R.O. Evolution of the morphological innovations of feathers. J. Exp. Zool. B Mol. Dev. Evol. 2005, 304, 570–579, doi:10.1002/jez.b.21073.
[13]  Lin, C.M.; Jiang, T.X.; Widelitz, R.B.; Chuong, C.M. Molecular signaling in feather morphogenesis. Curr. Opin. Cell Biol. 2006, 18, 730–741, doi:10.1016/j.ceb.2006.10.009.
[14]  Alibardi, L. Cell structure of barb ridges in down feathers and juvenile wing feathers of the developing chick embryo: Barb ridge modification in relation to feather evolution. Ann. Anat. 2006, 188, 303–318, doi:10.1016/j.aanat.2006.01.011.
[15]  Yue, Z.; Jiang, T.X.; Widelitz, R.B.; Chuong, C.M. Wnt3a gradient converts radial to bilateral feather symmetry via topological arrangement of epithelia. Proc. Natl. Acad. Sci. USA. 2006, 103, 951–955.
[16]  Maderson, P.F.; Hillenius, W.J.; Hiller, U.; Dove, C.C. Towards a comprehensive model of feather regeneration. J. Morphol. 2009, 270, 1166–1208, doi:10.1002/jmor.10747.
[17]  Mayr, G.; Peters, D.S.; Plowdowski, G.; Vogel, O. Bristle-like integumentary structures at the tail of the horned dinosaur Psittacosaurus. Naturwissenschaften 2002, 89, 361–365, doi:10.1007/s00114-002-0339-6.
[18]  Xu, X.; Norell, M.A.; Kuang, X.; Wang, X.; Zhao, Q.; Jia, C. Basal tyrannosauroids from China and evidence for protofeathers in tyrannosauroids. Nature 2004, 431, 680–684, doi:10.1038/nature02855.
[19]  Xu, X.; Guo, Y. The origin and early evolution of feathers: Insights from recent paleontological and neontological data. Vertebr. Palasiat. 2009, 47, 311–329.
[20]  Hu, D.Y.; Hou, L.H.; Zhang, L.J.; You, H.L. A pre-Archaeopteryx troodontid theropod from China with long feathers on the metatarsus. Nature 2009, 461, 640–643.
[21]  Xu, X.; Zhang, F. A new maniraptoran dinosaur from China with long feathers on the metatarsus. Naturwissenschaften 2005, 92, 173–177, doi:10.1007/s00114-004-0604-y.
[22]  Xu, X.; Zhou, Z.; Wang, X.; Kuang, X.; Du, X. Four-winged dinosaurs from China. Nature 2003, 421, 335–340, doi:10.1038/nature01342.
[23]  Xu, X.; You, H.L.; Kai, D.; Han, F.L. An Archaeopteryx-like theropod from China and the origin of Avialae. Nature 2011, 475, 465–475.
[24]  Xu, X.; Wang, X.L.; Wu, X.C. A dromaeosaurid dinosaur with a filamentous integument from the Yixian Formation of China. Nature 1999, 401, 262–266.
[25]  Ji, Q.; Norell, M.A.; Gao, K.Q.; Ji, S.A.; Ren, D. The distribution of integumentary structures in a feathered dinosaur. Nature 2001, 410, 1084–1088, doi:10.1038/35074079.
[26]  Xu, X.; Zhou, Z.; Prum, R.O. Branched integumental structures in Sinornithosaurus and the origin of feathers. Nature 2001, 410, 200–204, doi:10.1038/35065589.
[27]  Foth, C. On the identification of feather structures in stem-line representatives of birds: Evidence from fossils and actuopalaeontology. Palaeontol. Z. 2012, 86, 91–102.
[28]  Butler, R.J.; Upchurch, P.; Norman, D.B. The phylogeny of the ornithischian dinosaurs. J. Syst. Palaeontol. 2008, 6, 1–40, doi:10.1017/S1477201907002271.
[29]  Brusatte, S.L.; Nesbitt, S.J.; Irmis, R.B.; Butler, R.J.; Benton, M.J.; Norell, M.A. The origin and early radiation of dinosaurs. Earth Sci. Rev. 2010, 101, 68–100, doi:10.1016/j.earscirev.2010.04.001.
[30]  Makovicky, P.J.; Zanno, L.E. Theropod diversity and the refinement of avian characteristics. In Living Dinosaurs: The Evolutionary History of Modern Birds; Dyke, G.D., Kaiser, G., Eds.; John Wiley & Sons: Oxford, UK, 2011; pp. 9–29.
[31]  Rauhut, O.W. M.; Foth, C.; Tischlinger, H.; Norell, M.A. Exceptionally preserved juvenile megalosauroid theropod dinosaur with filamentous integument from the Late Jurassic of Germany. Proc. Natl. Acad. Sci. USA 2012, 109, 11746–11751.
[32]  Chiappe, L.M.; Ji, S.; Ji, Q.; Norell, M.A. Anatomy and systematics of the Confuciusornithidae (Theropoda: Aves) from the Late Mesozoic of northeastern China. Bull. Am. Mus. Nat. Hist. 1999, 242, 1–89.
[33]  Elzanowski, A. Biology of basal birds and the origin of avian flight. In Proceedings of the 5th Symposium of the Society of Avian Paleontology and Evolution, Beijing, China, 1–4 June 2000; Zhou, Z., Zhang, F., Eds.; Science Press: Beijing, China, 2002; pp. 211–226.
[34]  Chuong, C.M.; Wu, P.; Zhang, F.C.; Xu, X.; Yu, M.; Widelitz, R.B.; Jiang, T.X.; Hou, L. Adaptation to the sky: Defining the feather with integument fossils from Mesozoic China and experimental evidence from molecular laboratories. J. Exp. Zool. B Mol. Dev. Evol. 2003, 298, 42–56.
[35]  Zhang, F.; Zhou, Z.; Dyke, G.J. Feathers and “feather-like” integumentary structures in Liaoning birds and dinosaurs. Geol. J. 2006, 41, 395–404, doi:10.1002/gj.1057.
[36]  Wellnhofer, P. Archaeopteryx. Der Urvogel von Solnhofen; Friedrich Pfeil: München, Germany, 2008.
[37]  Nudds, R.L.; Dyke, G.D. Narrow primary feather rachises in Confuciusornis and Archaeopteryx suggest poor flight ability. Science 2010, 328, 887–889, doi:10.1126/science.1188895.
[38]  Zheng, X.T.; Xu, X.; Zhou, Z.H.; Miao, D.; Zhang, F.C. Comment on “Narrow primary feather rachises in Confuciusornis and Archaeopteryx suggest poor flight ability. Science 2010, 330, 320.
[39]  Hou, L.; Martin, L.D.; Zhou, Z.; Feduccia, A. Early adaptive radiation of birds: Evidence from fossils from northeastern China. Science 1996, 274, 1164–1167, doi:10.1126/science.274.5290.1164.
[40]  Zhang, F.; Zhou, Z. A primitive enantiornithine bird and the origin of feathers. Science 2000, 290, 1955–1960, doi:10.1126/science.290.5498.1955.
[41]  Li, L.; Duan, Y.; Hu, D.; Wang, L.; Cheng, S.; Hou, L. New eoentantiornithid bird from the Early Cretaceous Jiufotang Formation of western Liaoning, China. Acta Geol. Sin. Engl. Ed. 2006, 80, 38–41, doi:10.1111/j.1755-6724.2006.tb00792.x.
[42]  Prum, R.O.; Brush, A.H. The evolutionary origin and diversification of feathers. Q. Rev. Biol. 2002, 77, 261–295.
[43]  He, T.; Wang, X.L.; Zhou, Z.H. A new genus and species of caudipterid dinosaur from the Lower Cretaceous Jiufotang Formation of western Liaoning, China. Vertebr. Palasiat. 2008, 46, 178–189.
[44]  Prum, R.O. Moulting tail feathers in a juvenile oviraptorisaur. Nature 2010, 468, E1, doi:10.1038/nature09480.
[45]  Chiappe, L.M.; Marugán-Lobón, J.; Ji, S.; Zhou, Z. Life history of a basal bird: Morphometrics of the Early Cretaceous Confuciusornis. Biol. Lett. 2008, 4, 719–723, doi:10.1098/rsbl.2008.0409.
[46]  Ji, Q.; Chiappe, L.M.; Ji, S. A new late Mesozoic confuciusornithid bird from China. J. Vertebr. Paleontol. 1999, 19, 1–7.
[47]  Zhang, F.; Zhou, Z.; Benton, M.J. A primitive confuciusornithid bird from China and its implications for early avian flight. Sci. China Ser. D Earth Sci. 2008, 51, 625–639.
[48]  Stettenheim, P.R. The integumentary morphology of modern birds—An overview. Am. Zool. 2000, 40, 461–477, doi:10.1668/0003-1569(2000)040[0461:TIMOMB]2.0.CO;2.
[49]  Vinther, J.; Briggs, D.E. G.; Prum, R.O.; Saranathan, V. The colour of fossil feathers. Biol. Lett. 2008, 522–525.
[50]  Zhang, F.C.; Kearns, S.L.; Orr, P.J.; Benton, M.J.; Zhou, Z.H.; Johnson, D.; Xu, X.; Wang, X.L. Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds. Nature 2010, 463, 1075–1078, doi:10.1038/nature08740.
[51]  Marugán-Lobón, J.; Chiappe, L.M.; Ji, S.A.; Zhou, Z.H.; Gao, C.H.; Hu, D.Y.; Meng, Q.J. Quantitative patterns of morphological variation in the appendicular skeleton of the Early Cretaceous bird Confuciusornis. J. Syst. Palaeontol. 2011, 9, 91–101, doi:10.1080/14772019.2010.517786.
[52]  Zheng, X.; Zhang, Z.; Hou, L. A new enantiornitine bird with four long rectrices from the Early Cretaceous of northern Hebei, China. Acta Geol. Sin. Engl. Ed. 2007, 81, 703–708, doi:10.1111/j.1755-6724.2007.tb00995.x.
[53]  Chen, P.J.; Dong, Z.; Zhen, S. An exceptionally well-preserved theropod dinosaur from the Yixian Formation of China. Nature 1998, 391, 147–152, doi:10.1038/34356.
[54]  Xu, X.; Tang, Z.L.; Wang, X.L. A therizinosauroid dinosaur with integumentary structures from China. Nature 1999, 399, 350–354, doi:10.1038/20670.
[55]  Xu, X.; Zhou, Z.; Wang, X. The smallest known non-avian theropod dinosaur. Nature 2000, 408, 705–708.
[56]  Norell, M.; Ji, Q.; Gao, K.; Yuan, C.; Zhao, Y.; Wang, L. “Modern” feathers on a non-avian dinosaur. Nature 2002, 416, 36–37.
[57]  Snow, D.W. Family Momotidae (motmots). In Handook of the Birds of the World; Hoyo, J., Elliott, A., Sargatal, J., Eds.; Lynx Edicions: Barcelona, Spain, 2001; Volume 6.
[58]  Gill, F.B. Ornithology, 3rd ed.; W.H. Freeman and Company: New York, NY, USA, 2007.
[59]  Harris, M.P.; Williamson, S.; Fallon, J.F.; Meinhardt, H.; Prum, R.O. Molecular evidence for an activator-inhibitor mechanism in development of embryonic feather branching. Proc. Natl. Acad. Sci. USA 2005, 102, 11734–11739, doi:10.1073/pnas.0500781102.
[60]  Feduccia, A. The Origin and Evolution of Birds; Yale University Press: New Haven, CT, USA, 1996.
[61]  Peters, W.S.; Peters, D.S. Life history, sexual dimorphism and “ornamental” feathers in the Mesozoic bird Confuciusornis sanctus. Biol. Lett. 2009, 5, 817–820, doi:10.1098/rsbl.2009.0574.
[62]  Peters, W.S.; Peters, D.S. Sexual size dimorphism is the most consistent explanation for the body size spectrum of Confuciusornis sanctus. Biol. Lett. 2010, 6, 531–532, doi:10.1098/rsbl.2010.0173.
[63]  Padian, K.; Horner, J.R. The evolution of “bizarre structures” in dinosaurs: Biomechanics, sexual selection or species recognition? J. Zool. 2011, 238, 3–17, doi:10.1111/j.1469-7998.2010.00719.x.
[64]  Li, D.S.; Sullivan, C.; Zhou, Z.H.; Zhang, F.C. Basal birds from China: A brief review. Chin. Birds 2010, 1, 83–96, doi:10.5122/cbirds.2010.0002.
[65]  O’Connor, J.K.; Sun, C.K.; Xu, X.; Wang, X.L.; Zhou, Z.H. A new species of Jeholornis with complete caudal integument. Hist. Biol. 2012, 24, 29–41.
[66]  Xu, X.; Zheng, X.T.; You, H.L. Reply: Moulting tail feathers in a juvenile oviraptorosaur. Nature 2010, 468, E2.
[67]  Brush, A.H. Evolving a protofeather and feather diversity. Am. Zool. 2000, 40, 631–639, doi:10.1668/0003-1569(2000)040[0631:EAPAFD]2.0.CO;2.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133